• 제목/요약/키워드: Injector timing

검색결과 62건 처리시간 0.024초

전자제어식 직접분사 디젤엔진의 연료제어를 위한 인젝터 관측기 설계 (Observer Design of an Injector for Fuel Control in DI Diesel Engines with an Electronically Controlled Injector)

  • 김선우;이강윤;정남훈;선우명호
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1305-1311
    • /
    • 2004
  • This study presents a mathematical model and a sliding mode observer of the injection system for common rail diesel engines. The injector model consists of three subsystems: the actuator subsystem, the mechanical subsystem, and the hydraulic subsystem. In the actuator subsystem, the constitutive relations of piezoelectricity are used to model the actuator made up of piezoelectric material. Based on the proposed model, the observer estimates the injection rate and injection timing, and can play a vital role of sensorless control of fuel injection in the near future. The sliding mode theory is applied to the observer design in order to overcome model uncertainties. The injector model and observer are evaluated through the injector experiments. The simulation results of the injector model are in good agreement with the experimental data. The sliding mode observer can effectively estimate the injection timing and the injection rate of the injector.

HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정 (Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation)

  • 남기훈;박승범;선우명호
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.

인젝터 컨트롤러의 개발 (Development of Injector Controller)

  • 조기량
    • 한국전자통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.279-284
    • /
    • 2013
  • 본 논문에서는 경제적이고, 채널 확장성이 용이하며, 다양한 성능시험에 대응이 가능한 솔레노이드 타입의 인젝터 컨트롤러를 연구 개발하고 그 성능을 평가하였다. 개발된 컨트롤러는 임베디드 시스템에 기반을 두고 있으며, 인젝터에서 고압으로 분사되는 연료의 분사 타이밍 및 분사량에 대한 정밀제어는 물론 솔레노이드의 전기적인 특성을 측정하여 인젝터의 성능평가도 가능하다. 또한, 부가적으로 인젝터의 분무 형태를 정밀하게 촬영할 수 있는 광원과 초고속 카메라의 정밀시간제어도 동시에 가능하도록 하였다.

비도로용 디젤엔진의 분사시기 및 인젝터 변경에 따른 배출가스 특성 연구 (Effect of Injection Timing and Injector Hole Number on Emission Characteristics for Off-road Diesel Engine)

  • 김훈명;강정호;한다혜;정학섭;표수강;안중규
    • 한국연소학회지
    • /
    • 제19권2호
    • /
    • pp.15-20
    • /
    • 2014
  • Environmental regulations are being reinforced for the solution of environmental pollution, that are global issues. Exhaust gas regulations of off-road engines also demand stepwise reduction emission from beginning of Tier 4 interim(2013). Characteristically, Tier 4 regulation apply the NRTC mode which is a transient cycle. And technical studies using NRTC mode are uncommon. In this study, for satisfy the Tier 4 final regulation on the NRTC mode, experimental study was conducted using a 3.4 L off-road engine. Fuel injection timing and injector hole number are chosen as parameters for investigation of combustion and exhaust gas characteristics on off-road diesel engine.

3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구 (Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System)

  • 장진영;우영민;김강출;조종표;정용진;고아현;표영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구 (Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

Common Rail을 이용한 대형 디젤 가시화엔진에서의 연소특성 (Combustion Characteristics of Common Rail System by Using a Heavy Duty Transparent Engine)

  • 김영민;이장희;김상호;이웅건;홍창호;최병철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.896-902
    • /
    • 2001
  • To meet strict emission regulation while improving engine performances, common rail injection system which is suitable for electronic control, and capable of controlling injection quantity, timing, rate and pressure individually as well as realizing high pressure has been developed. At present study, a 8L DI diesel engine was converted to a single-cylinder experimental engine allowing optical access through an extended piston and a prototype of common rail injector in progress was applied to the engine. The combustion characteristics of the engine were analysed by using direct images and characteristics of the injector were analysed. We can not say that the results are always the same to general common rail injection system but that they are just characteristics of specific prototype injector.

  • PDF

좁은 분사각을 갖는 인젝터를 이용한 예혼합 압축착화 엔진의 분사조건에 따른 분무 및 연소특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of a HCCI Engine according to Injection Conditions using a Narrow Angle Injector)

  • 김형민;김영진;류재덕;이기형
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.161-167
    • /
    • 2006
  • As the exhaustion of petroleum resources and air pollution problems are getting serious recently, there are growing interests in premixed diesel engines which have the potential of achieving a more homogeneous mixture near TDC compared to conventional diesel engines. Early studies have shown that the fuel injection frequency and spray angle affected the mixture formation and combustion in a HCCI(Homogeneous Charge Compression Ignition) engine. Therefore, the purpose of this study is to investigate the relationship between combustion and mixture formations by injection timing and frequency using a narrow angle injector, NADI (Narrow Angle Direct Injection). In this study, we found that the fuel injection timing and injection frequency affect the mixture formations and then affect combustion in the HCCI engine.

  • PDF

고압 연료 제어와 분사 특성 (A High Pressure Fuel Control and its Injection Characteristics)

  • 김상호;이용규;김재업;김응서
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF

CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향 (Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine)

  • 김주신;김경현;이한성;임상우;강희영;고대권
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.