• Title/Summary/Keyword: Injection process

Search Result 2,276, Processing Time 0.034 seconds

Etiology of Delayed Inflammatory Reaction Induced by Hyaluronic Acid Filler

  • Won Lee;Sabrina Shah-Desai;Nark-Kyoung Rho;Jeongmok Cho
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2024
  • The etiology and pathophysiology of delayed inflammatory reactions caused by hyaluronic acid fillers have not yet been elucidated. Previous studies have suggested that the etiology can be attributed to the hyaluronic acid filler itself, patient's immunological status, infection, and injection technique. Hyaluronic acid fillers are composed of high-molecular weight hyaluronic acids that are chemically cross-linked using substances such as 1,4-butanediol diglycidyl ether (BDDE). The mechanism by which BDDE cross-links the two hyaluronic acid disaccharides is still unclear and it may exist as a fully reacted cross-linker, pendant cross-linker, deactivated cross-linker, and residual cross-linker. The hyaluronic acid filler also contains impurities such as silicone oil and aluminum during the manufacturing process. Impurities can induce a foreign body reaction when the hyaluronic acid filler is injected into the body. Aseptic hyaluronic acid filler injections should be performed while considering the possibility of biofilm formation or delayed inflammatory reaction. Delayed inflammatory reactions tend to occur when patients experience flu-like illnesses; thus, the patient's immunological status plays an important role in delayed inflammatory reactions. Large-bolus hyaluronic acid filler injections can induce foreign body reactions and carry a relatively high risk of granuloma formation.

A study on adaptation measures to climate crisis for water supply system of Jeju Special Self-Governing Province (제주특별자치도 상수도 기후위기 적응대책 연구)

  • Jinkeun Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.447-456
    • /
    • 2023
  • Risk assessment on Jeju Special Self-Governing Province(JSSGP)'s water supply facilities and establishment of adaptation measures for climate crisis factors were implemented. JSSGP's vulnerability to the climate crisis was high in the order of drought, heat wave, heavy rain and strong wind. As a drought adaptation measure, policies of water saving and revenue water ratio improvement were considered. As for the heat wave adaptation measure, the introduction of an advanced water treatment process was suggested in response to the increase of algae cell number which resulting in taste and odor problem. As for heavy rain adaptation measures, the installation and operation of automatic coagulant injection devices for water purification plants that take turbid surface water were proposed. As a measure to adapt to strong winds, stabilization of power supply such as installation of dual power line was proposed in preparation for power outages. It is expected that water facilities will be able to supply high-quality tap water to customers even under extreme climate conditions without interruption through risk assessment for climate crisis factors and active implementation of adaptation measures.

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF

Prediction of Sink Phenomenon during Forging Process and Improvement of LPI Fuel Filter Housing Forging Product (LPI 차량용 연료필터 상부 하우징 냉간 단조 성형 공정에서 sink 현상 예측 및 개선)

  • Kim, Jun-Young;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.395-399
    • /
    • 2017
  • The LPI fuel filter housings used in automobiles were made from conventional die castings but have recently been developed by cold forging to improve the weight and durability. On the other hand, a sink may develop at the core of the forged product due to the resulting T-shape, which not only reduces the aesthetics, but also increases the post-processing cost of the product. Therefore, this research focused on methods to predict and mitigate sink development and progression during the T-shape forging process. Finite element analysis of the forging process was first performed to determine the optimal initial workpiece devoid of burrs and underfills. An accurate sink prediction was then obtained via metal flow analysis, which was a result of the finite element simulation. Through finite element analysis, it was confirmed that sink development is a product of the differences in nodal velocities arising from the T-shaped forging process. Consequently, a pad was inserted beneath the sink to minimize these velocity differences. The results yielded significant improvement with regard to the sink defect. This method was practically applied to an industrial site to validate the sink improvement.

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts (전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구)

  • Pyo, Je-Jung;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.

Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer (2-TNATA:C60 정공 주입층을 이용한 유기발광다이오드의 성능 향상 연구)

  • Park, So-Hyun;Kang, Do-Soon;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • Vacuum deposited 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA), used as a hole injection (HIL) material in OLEDs, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in the devices. C60-doped 2-TNATA:C60 (20 wt%) film was formed via co-evaporation process and molecular ordering and topology of 2-TNATA:C60 films were investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized as well. Vacuum-deposited C60 film was molecularly oriented, but neither was 2-TNATA:C60 film due to the uniform dispersion of C60 molecules in the film. By using C60-doped 2-TNATA:C60 film as a HIL, the current density and luminance of a multi-layered ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al device were significantly increased and the current efficiency of the device was increased from 4.7 to 6.7 cd/A in the present study.

Comparison of Antioxidant Activities of Extruded Rice with Vegetables by Cold and Conventional Extrusion (저온 및 재래식 공정에 따른 쌀·야채류 압출성형물의 항산화 활성 비교)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1212-1218
    • /
    • 2015
  • The study was designed to investigate the effects of cold and conventional extrusion on antioxidant properties of extruded rice with vegetables. Moisture content and screw speed were fixed at 25% and 150 rpm. Cold extrusion and conventional extrusion were adjusted at die temperature of $80^{\circ}C$ with a $CO_2$ injection rate of 300 mL/min and $140^{\circ}C$ without a $CO_2$ injection, respectively. Pumpkin, tomato, strawberry, and green tea powder of 10% were individually blended with rice flour. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging activity of extruded pumpkin and tomato mix by conventional extrusion was higher than that by cold extrusion. Total phenolic content in extruded pumpkin, tomato, and strawberry mix by cold extrusion was higher than that by conventional extrusion. Total flavonoid content was highest (18.82 mg/g) in extruded green tea by conventional extrusion. Total carotenoid content decreased in extruded pumpkin but increased in extruded tomato. Tomato extrudates with cold extrusion had higher lycopene content than conventional extrusion. Anthocyanin content of conventional extruded strawberry was higher than that of cold extrudates. Total chlorophyll contents decreased through the extrusion process.

Analysis of $Cr_2O_7^{-2}/MnO_4^{-}$ Mixtures by an Absorption Spectrometry Coupled with Flow Injection Analysis(FIA) (흐름주입분석기법에 접목된 흡수분광분석법에 의한 $Cr_2O_7^{-2}/MnO_4^{-}$혼합물의 분석)

  • Hwang, Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.3
    • /
    • pp.212-219
    • /
    • 2000
  • An absorption spectrometry coupled with flow injection analysis has been developed and tested for the analysis of the Cr$_2O_7^{2-}$/Nn$O_4^-$ mixtures. Even though one has to inject the sample twice into the FIA system and the process of the sample treatment is required to completely destroy the Mn$O_4^-$ ion for the analysis of the Cr$_2O_7^{2-}$ ion, the new method has definite advantages over the current method. It utilizes only a single analytical wavelength (570 nm) and enables one to construct calibration curves which accurately follow the Beer's law over wide ranges of analytical concentrations of both ions ($2.0{\times}10^{-6}$M∼$8.0{\times}10^{-3}$M for Cr$_2O_7^{2-}$ ion, $2.0{\times}10^{-6}$M∼$4.0{\times}10^{-3}$M for MnO4- ion).

  • PDF

Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol (분무건조법을 이용한 한약추출물 해충기피 실리카 졸의 다공성 방충입자의 제조)

  • Park, Hee Young;Hwang, KiSeob;Kim, Jung-Hyeon;Lee, Jun-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.549-556
    • /
    • 2015
  • Anti-insect repellent silica sol from mixture with silica and anti-insect repellent solution extracted from medicinal herbs was prepared. The micron size porous sphere powder with anti-insect repellent solution was prepared by the spray drying method. The characteristic of anti-insect repellent powder using spray drying method was analyzed by FE-SEM, PSA, TGA with the concentration of anti-insect repellent sol (anti-insect repellent solution and silica) and conditions of spray drier. The average particle size of 4, 7 wt% and 10 wt% of anti-insect repellent sol concentration were 8.3, $9.5{\mu}m$ and $11.7{\mu}m$, respectively. The particle size is increasing with high concentration of anti-insect repellent sol. Other hands, particle size as the temperature of inlet nozzle and velocity of sol injection were nearly same at high velocity of gas injection. Also, Anti-insect repellent impregnation in porous sphere powder were confirmed by TGA methode and its thermal property was stable up to $200^{\circ}C$. We expect that anti-insect repellent powder is applied for plastic compound and process of film manufacture.