• Title/Summary/Keyword: Injection pipe

Search Result 161, Processing Time 0.03 seconds

An Effect of the Micro Bubble Formation Depending on the Saturator and the Nozzle in the Dissolved Air Flotation System (DAF 공정에서 공기포화장치와 노즐 특성 별 미세기포 발생에 미치는 영향)

  • Park, S.C.;Oh, H.Y.;Chung, M.K.;Song, S.L.;Ahn, Y.H.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.929-936
    • /
    • 2013
  • The saturator and injection nozzle are important facilities on the dissolved air flotation process. To increase the formation of micro bubble, it is required to improve the air dissolving performance in the saturator and keep the pressure uniform from the saturator to the nozzle. This study aimed to evaluate the performance of the saturator and the hydraulic effect of the nozzle and the pipe structure. The air volume concentration, bubble size and bubble residual time were measured in the test. The saturator, which had mounted with the spray nozzle, showed a good performance for bubble formation. Also, the characteristics of micro bubble formation were influenced by pressure uniformity and flow velocity through the orifice in the nozzle.

Simulation Study for the Performance Improvement of the Injector Module for Heavy-duty CNG Engines (대형 CNG 엔진용 인젝터 모듈의 성능 개선을 위한 연구)

  • Kim, Yong-Rae;Park, Won-A;Kim, Chang-Gi;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • A fuel supply system of heavy-duty CNG engine is composed as a module structure which is integrated by about 6 injectors. There are only one input and output passage for gas fuel supply in this injector module. The response performance for transient operation of an CNG engine is very poor because only one output fuel supply line is connected to the intake pipe after a throttle valve. In this study, a new guideline and internal flow design for the CNG injector module is suggested for the improvement of response performance by fluid dynamic simulations. As a result, the response performance of gas fuel supply can be improved by decreasing the total volume of internal flow passages and a same distance design from each injector to the exit of module shows good response performance and acquirement of linearity of fuel supply. But the injection order has little influence to injection performances.

Liquid Oxygen Supercooling System in the 75 tonf-class Liquid Engine Combustion Test Facility (75톤급 액체엔진 연소시험설비의 액체산소 과냉각 시스템)

  • Seo, Daeban;Yoo, Byoungil;Lee, Jungho;Cho, Namkyung;Kim, Seunghan;Han, Yeoungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1080-1083
    • /
    • 2017
  • In the design of KSLV-II, there is a scenario in which supercooled liquid oxygen is supplied to prevent a geysering phenomenon in the oxidizer pipe and a cavitation phenomenon at the pump inlet. To verify this condition in the engine development test phase, a system that supplies supercooled liquid oxygen to the engine was applied in the engine combustion test facility. In this system, supercooling methods using a vacuum ejector and using helium injection to the tank were appied. Both tests were carried out for about 17 minutes. Supercooling results of about 3.3K for the ejector test and about 2.2K for the helium injection test were obtained at the 50% level of the tank.

  • PDF

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

Improvement of Medium and Small Urban Stream Water Quality and Applicability of Design Factor Using Biological and Physicochemical Processing (도심지역 내 중·소하천 수질 개선을 위한 가압부상 및 관로형 미생물 부착 공정 적용에 관한 연구)

  • Kim, Moon-Ki;Choi, Jung-Su;Kim, Sam-Ju;Kim, Hyun-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.509-517
    • /
    • 2013
  • The purpose of this study is to assess the applicability of device-type stream coagulation process which combines physiochemical, biological processing for efficient improvement of water quality in small, middle-sized urban streams. The stream purification facility of this study is compose of pressure flotation type Micro Bubble Process(MBP) to remove TSS and TP and conduit line type Attached Microbial Pipe System(AMPS) to remove BOD. Test conditions of each device were set by floating stay time and change of ultra fine bubble injection amount of MBP, and change of AMPS stay time. Also, removal efficiency of pollution sources of each process were assess by change of season. As result of continuous operation of each process, MBP showed a maximum of TSS 83.69%, TP 95.15% process efficiency and AMPS showed a maximum of 52.95% TBOD5 removal efficiency. Also as result of circular operation of each process, MBP showed a maximum of TSS 69.75%, TP 70.17% process efficiency and AMPS showed a maximum of 68.58% TBOD5 removal efficiency. Therefore, it is considered that this stream coagulation process is effective in improving the water quality of streams in urban areas.

Proposal of A Method to Enhance Pumping Efficiency of Cementitious Materials by Injecting Activation Agent to Slip-Layer and its Lab-Scale Experimental Verification (시멘트계 재료의 펌프압송성능 향상을 위한 윤활층 활성화제 주입 방법 제안 및 소규모 실험검증)

  • Lee, Jung-Soo;Yoo, Yong-Sun;Han, Jin-Gyu;Park, Chan-Kyu;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.442-449
    • /
    • 2017
  • In this study, a method to inject small amount of activation agent from the outside of the pipeline to the inside wall of the pipe was newly proposed to enhance pumping efficiency of cementitious materials. The activation agent is injected into the slip-layer, which is generally formed in the vicinity of the inside wall of the pipe during pumping cementitous materials. Through the injections, it is expected to decrease viscosity of slip-layer, namely, the friction between the mateirals and the pipe. The proposed method was verified by lab-scale pumping tests with mortars having water to cement ratio of 47%. The tests were performed with two different type of activation agents(superplasticizer and anionic surfactant) and three different amount of the agents(0.14, 0.28, 0.42% of the mortar volume). The compressive strength were measured with and without injecting the activation agent, and the internal pressures of pipeline were measured. When the anionic surfactant was used, there was no change in the compressive strength. As the amount of anionic surfactant increased, the pumping pressure decreased up to 71.4% at the maximum.

Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II) (해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II))

  • 안석환;임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF

Effect of NH3 Uniformity Index on SCR System According to Urea Spray Characteristics (요소수 분무특성이 SCR시스템 내 분무균일도에 미치는 영향)

  • Kim, Se Hun;Ko, Jin Seok;Ko, Jae Yu;Cho, Young Jun;Lee, Dong Ryu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.178-184
    • /
    • 2019
  • Diesel engines have the advantages of higher thermal efficiency and lower CO2 emissions than gasoline engines, but have the disadvantages that particulate matter (PM) and nitrogen oxides (NOx) emissions are greater than those of gasoline engines. In particular, nitrogen oxides (NOx) emitted from diesel engines generates secondary ultrafine dust (PM2.5) through photochemical reactions in the atmosphere, which is fatal to humans. In order to reduce nitrogen oxides (NOx), pre-treatment systems such as EGR, post-treatment systems such as LNT and Urea SCR have been actively studied. The Urea SCR consists of an injection device injecting urea agent and a catalytic device for reducing nitrogen oxides (NOx). The nitrogen oxide (NOx) reduction performance varies greatly depending on the urea uniformity in the exhaust pipe. In this study, spray characteristics according to the spray hole structure were confirmed, and the influence of spray uniformity on spray characteristics was studied through engine evaluation.

A Study on the System Performance Prediction Method of Natural Circulation Solar Hot Water System (자연순환식 태양열 급탕 시스템의 성능 추정 방법에 관한 연구)

  • Youn, Suck-Berm;Chun, Moon-Hyun
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.37-53
    • /
    • 1987
  • This study has been prepared for the purpose of developing the system performance prediction method of natural circulation solar hot water system. The storage tank of the natural circulation solar hot water system equipped with flat-plate solar collector is located at higher elevation than the solar collectors. Therefor, the storage tank temperature distribution formed accordance with configuration of storage tank by flow rate of circulating fluid affect system collection efficiency. In this study measure the storage tank temperature distribution with various experimental system under real sun condition and present the theoretical prediction method of the storage tank temperature. Moreover measure the flow rate not only day-time but also night-time reverse flow rate with die injection visual flow meter. Main conclusion obtain from the present study is as follows; 1) The storage tank temperature distribution above the connecting pipe connection position is the same as that of the fully mixed tank and below the connection position is the same as that of stratified tank. 2) The system performance sensitive to the storage tank temperature distribution. Therefore detailed tank model is necessary. Average storage tank temperature can be calculate 3% and storage tank temperature profile can get less than 10% difference with this model system.

  • PDF

Effect analysis of ISLOCA pathways on fission product release at Westinghouse 2-loop PWR using MELCOR

  • Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2878-2887
    • /
    • 2021
  • As the amount of fission product released from ISLOCA was overestimated because of conservative assumptions in the past, several studies have been recently conducted to evaluate the actual release amount. Among several pathways for the ISLOCA, most studies were focused on the pathway with the highest possibility. However, different ISLOCA pathways may have different fission product release characteristics. In this study, fission product behavior was analyzed for various pathways at the Westinghouse two-loop plant using MELCOR. Four pathways are considered: the pipes from a cold leg, from a downcomer, from a hot leg to the outlet of RHR heat exchanger, and the pipe from the hot leg to the inlet of RHR pump (Pathway 1-4). According to the analysis results, cladding fails at around 2.5 h in Pathways 1 and 2, and on the other hand, about 3.3 h in Pathways 3 and 4 because the ISLOCA pathways affect the safety injection flow path. While the release amount of cesium and iodine ranges between 20 and 26% in Pathways 1 to 3, Pathway 4 allows only 5% to the environment because the break location is submerged. Also, as more than 90% of cesium released to the environment passes through the personnel door, reinforcing the pressure capacity of the doors would be a significant factor in the accident management of the ISLOCA.