• Title/Summary/Keyword: Injection carbon

Search Result 454, Processing Time 0.025 seconds

A Study on the Production of Carbon Fiber Composites using Injection-molding Grade Thermoplastic Pellets (사출성형용 열가소성 펠렛을 이용한 탄소섬유 복합소재 제작에 관한 연구)

  • Jeong, E.C.;Yoon, K.H.;Kim, J.S.;Lee, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.402-408
    • /
    • 2016
  • A manufacturing technology of carbon fiber composites with thermoplastic polymer pellets and continuous woven fiber was investigated using a compression molding process. To secure the impregnation of resin into the porosity of fabric the composite specimens were prepared with general injection-molding grade polypropylene pellets and low viscosity polycarbonate pellets. Tensile tests of polypropylene and polycarbonate composites were performed. Polycarbonate composites showed higher fracture strength than that of polypropylene composites because of the difference of matrix properties. However, the increase rate of strength was lower than that of polypropylene composites due to the difference of coherence between matrix and reinforcement. To investigate the effect of carbon fiber volume fraction on the fracture strength variation polypropylene composites with different volume fraction were compression molded and tensile tests were performed together. It was shown that the fracture strength of the polypropylene composites increased by 3.2, 5.4 and 6.9 times with the increase of carbon fabric volume fraction of 0.256, 0.367, and 0.480, respectively.

Catalytic Pyrolysis of Various Carbon Number Feed Oil Using a Spouted Bed Reactor (Spouted Bed Reactor를 이용한 다양한 탄소수 원료유 촉매 열분해)

  • Yoo, Kyeong Seun;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.627-630
    • /
    • 2011
  • We focus on a catalytic process based on direct injection method that can produce high-quality oils of gasoline and kerosene with various carbon-number feed oils. The reaction characteristics of a commercial catalyst were analyzed using a spouted bed reactor. Decane and pentadecane were used to compare the characteristics of the fixed bed and the spouted bed reactor. The yield of gasoline plus kerosene was highest at the reaction temperature of $550^{\circ}C$. For the spouted bed reactor, the at-a-pulse injection was more effective for catalytic cracking of feed oils than multiple consecutive injections. The reaction activity became higher as the carbon number of feed oil is larger.

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry

  • Habiba, Nur-E;Uddin, Rokon;Salminen, Kalle;Sariola, Veikko;Kulmala, Sakari
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.100-111
    • /
    • 2022
  • This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

Experimental Study on the Heat Transfer Characteristics on a Film-Cooled Flat Plate - Effect of Injection Angle and Blowing Rate - (막냉각되는 평판에서의 열전달특성에 관한 실험적 연구)

  • 이상우;신세현;이택시;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1415-1427
    • /
    • 1988
  • The effect of injection angle and blowing rate on a film-cooled flat plate has been investigated experimentally. Three cases of 90.deg. injection, 35.deg. streamwise injection and 35.deg. spanwise injection are employed. The naphthalene sublimation technique in used to obtain local mass transfer coefficients. Thus heat transfer coefficients are evaluated using heat-mass transfer analogy. Schlieren photographs are taken to visualize the trajectory of injection fluid by introducing carbon dioxide gas through injection tubes. The experiments indicate that due to the injection the heat transfer coefficients increase significantly in the neighborhood of the infection holes, so the design of film cooled component must be based on the heat transfer coefficient with injection as well as film cooling effectiveness.

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils (탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과)

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.

A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma (열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구)

  • Seong-Pyo Kang;Tae-Hee Kim
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.155-164
    • /
    • 2024
  • Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.

Characteristics of Carbon Dioxide Destruction with a Plasma Torch and Effect of Additives (플라즈마 토치를 이용한 이산화탄소 분해특성과 첨가제의 영향)

  • Kim, Seong Cheon;Jeon, Jeong Hyeon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • To decompose carbon dioxide, which is a representative greenhouse gas, a plasma torch was designed and manufactured. To examine the characteristics of carbon dioxide decomposition via plasma discharge, a case wherein pure carbon dioxide was supplied and a case wherein methane and/or $TiCl_4$ were injected as additives were investigated and compared. The carbon dioxide and methane conversion rate, energy decomposition efficiency, produced gas concentration, carbon monoxide and hydrogen selectivity, carbon-black and $TiO_2$ were also investigated. The maximum carbon dioxide conversion rate was 28.9% when pure carbon dioxide was supplied; 44.6% when $TiCl_4$ was injected as am additive; and 100% percent when methane was injected as an additive. Therefore, this could be explained that the methane injection showed the highest carbon dioxide decomposition. Furthermore, the carbon-black and $TiO_2$ were compared with each commercial materials through XRD and SEM. It was found that the carbon-black that was produced in this study is similar for commercial materials. It was found that the $TiO_2$ that was produced in this study is suitable for photocatalyst and pigment because it has mixed anataze and rutile.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.