DOI QR코드

DOI QR Code

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry

  • Habiba, Nur-E (Faculty of Medicine and Health Technology, Tampere University) ;
  • Uddin, Rokon (Department of Chemistry and Materials Science, Aalto University) ;
  • Salminen, Kalle (Department of Chemistry and Materials Science, Aalto University) ;
  • Sariola, Veikko (Faculty of Medicine and Health Technology, Tampere University) ;
  • Kulmala, Sakari (Department of Chemistry and Materials Science, Aalto University)
  • Received : 2021.07.01
  • Accepted : 2021.08.22
  • Published : 2022.02.28

Abstract

This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.

Keywords

Acknowledgement

This work was financially supported by Aalto University and the Academy of Finland (grant #311415). N.E.H. would like to acknowledge Panu Rautiainen and Felix Sari Dore for contributing in some of the measurements.

References

  1. S. Kulmala, T. Ala-Kleme, L. Heikkila, L. Vare, J. Chem. Soc., Faraday Trans., 1997, 93(17), 3107-3113. https://doi.org/10.1039/a702135f
  2. S. Kulmala, T. Ala-Kleme, H. Joela, A. Kulmala, J. Radioanal. Nucl. Chem., 1998, 232(1-2), 91-96. https://doi.org/10.1007/BF02383720
  3. S. Kulmala, T. Ala-Kleme, M. Latva, K. Loikas, H. Takalo, J. Fluoresc., 1998, 8, 59-65. https://doi.org/10.1007/BF02758238
  4. S. Kulmala, A. Kulmala, T. Ala-Kleme, J. Pihlaja, Anal. Chim. Acta., 1998, 367 (1-3), 17-31. https://doi.org/10.1016/S0003-2670(98)00154-8
  5. J. Suomi, S. Kulmala, Hot Electron-Induced Electrogenerated Chemiluminescence, in: Chris D. Geddes (Ed.), Rev. Fluoresc. 2009, 2011, 47-73.
  6. K. Salminen, P. Gronroos, S. Tuomi, S. Kulmala, Anal. Chim. Acta., 2017, 985, 54-60. https://doi.org/10.1016/j.aca.2017.07.035
  7. K. Salminen, P. Gronroos, J. Eskola, E. Nieminen, H. Harma, S. Kulmala, Electrochim. Acta., 2018, 282, 147-154. https://doi.org/10.1016/j.electacta.2018.06.016
  8. K. Salminen, P. Kuosmanen, M. Pusa, O. Kulmala, M. Hakansson, S. Kulmala, Anal. Chim. Acta., 2016, 912, 24-31. https://doi.org/10.1016/j.aca.2016.01.021
  9. M. Hakansson, Q. Jiang, J. Suomi, K. Loikas, M. Nauma, T. Ala-Kleme, J. Kankare, P. Juhala, J.U. Eskola, S. Kulmala, Anal. Chim. Acta., 2006, 556(2), 450-454. https://doi.org/10.1016/j.aca.2005.09.064
  10. S. Kulmala, C. Matachescu, A. Kulmala, D. Papkovsky, M. Hakansson, H. Ketamo, P. Canty, Anal. Chim. Acta., 2002, 453(2), 253-267. https://doi.org/10.1016/S0003-2670(01)01491-X
  11. A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, S. Franssila, Thin Solid Films., 2009, 517(19), 5779-5782. https://doi.org/10.1016/j.tsf.2009.04.014
  12. T. Ylinen-Hinkka, A.J. Niskanen, S. Franssila, S. Kulmala, Anal. Chim. Acta., 2011, 702(1), 45- 49. https://doi.org/10.1016/j.aca.2011.06.038
  13. A. J. Niskanen, T. Ylinen-Hinkka, M. Pusa, S. Kulmala, S. Franssila, Thin Solid Films., 2010, 519(1), 430-433. https://doi.org/10.1016/j.tsf.2010.07.027
  14. A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, S. Franssila, Sensors Actuators B Chem., 2011, 152(1), 56-62. https://doi.org/10.1016/j.snb.2010.09.049
  15. M. Hakansson, K. Salminen, P. Kuosmanen, J. Eskola, H. Peuravuori, S. Kulmala, J. Electroanal. Chem., 2016, 769, 11-15. https://doi.org/10.1016/j.jelechem.2016.02.040
  16. S. Kulmala, M. Hakansson, A.-M. Spehar, A. Nyman, J. Kankare, K. Loikas, T. Ala- Kleme, J. Eskola, Anal. Chim. Acta., 2002, 458(2), 271-280. https://doi.org/10.1016/S0003-2670(02)00065-X
  17. S. Kulmala, T. Ala-Kleme, A. Kulmala, and D. Papkovsky, K. Loikas, Anal. Chem., 1998, 70(6), 1112-1118. https://doi.org/10.1021/ac970954g
  18. Q. Jiang, A.-M. Spehar, M. Hakansson, J. Suomi, T. Ala-Kleme, S. Kulmala, Electrochim. Acta., 2006, 51(13), 2706-2714. https://doi.org/10.1016/j.electacta.2005.08.004
  19. J. Suomi, T. Ylinen, M. Hakansson, M. Helin, Q. Jiang, T. Ala-Kleme, S. Kulmala, J. Electroanal. Chem., 2006, 586(1), 49-55. https://doi.org/10.1016/j.jelechem.2005.09.013
  20. Q. Jiang, J. Suomi, M. Hakansson, A.J. Niskanen, M. Kotiranta, S. Kulmala, Anal. Chim. Acta., 2005, 541(1-2), 157-163. https://doi.org/10.1016/j.aca.2004.12.075
  21. Q. Jiang, S. Sun, M. Hakansson, K. Langel, T. Ylinen, J. Suomi, S. Kulmala, J. Lumin., 2006, 118, 265-271. https://doi.org/10.1016/j.jlumin.2005.08.017
  22. T. Ala-Kleme, S. Kulmala, Q. Jiang, Luminescence., 2006, 21(2), 118-125. https://doi.org/10.1002/bio.895
  23. T. Ala-Kleme, S. Kulmala, L. Vare, and P. Juhala, M. Helin, Anal. Chem., 1999, 71 (24), 5538-5543. https://doi.org/10.1021/ac981336i
  24. P.-P. Ilich, K.R. McCormick, A.D. Atkins, G.J. Mell, T.J. Flaherty, M.J. Bruck, H.A. Goodrich, A.L. Hefel, N. Juranic, S. Seleem, J. Chem. Educ., 2010, 87(4), 419-422. https://doi.org/10.1021/ed800093n
  25. G. V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data., 1988, 17(2), 513-886. https://doi.org/10.1063/1.555805
  26. B.G. Ershov, Russ. Chem. Rev., 1997, 66(2), 93-105. https://doi.org/10.1070/RC1997v066n02ABEH000264
  27. S. Farooq, C.N. Kurucz, T.D. Waite, W.J. Cooper, Water Res., 1993, 27(7), 1177-1184. https://doi.org/10.1016/0043-1354(93)90009-7
  28. C.N. Kurucz, T.D. Waite, W.J. Cooper, M.J. Nickelsen, High Energy Electron Beam Irradiation of Water, Wastewater and Sludge, in: Springer, Boston, MA, 1991, 1- 43.
  29. Y.A. Maruthi, N.L. Das, K. Hossain, K.S.S. Sarma, K.P. Rawat, S. Sabharwal, Appl. Water Sci., 2011, 1, 49-56. https://doi.org/10.1007/s13201-011-0008-z
  30. Z.A. Rotenberg, Y.A. Prishchepa, Y.V. Pleskov, J. Electroanal. Chem. Interfacial Electrochem., 1974, 56, 345-371. https://doi.org/10.1016/S0022-0728(74)80037-9
  31. H.-I. Joschek, L.I. Grossweiner, J. Am. Chem. Soc., 1966, 88(14), 3261-3268. https://doi.org/10.1021/ja00966a017
  32. L.I. Grossweiner, G.W. Swenson, E.F. Zwicker, Science, 1963, 141(3583), 805-6. https://doi.org/10.1126/science.141.3583.805
  33. M.C. Sauer, R.A. Crowell, I.A. Shkrob, J. Phys. Chem., 2004, 108(25), 5490-5502. https://doi.org/10.1021/jp049722t
  34. N.A. Atari, J. Lumin., 1980, 21, 387-396. https://doi.org/10.1016/0022-2313(80)90030-7
  35. P. Gronroos, K. Salminen, J. Paltakari, Q. Zhang, N. Wei, E. Kauppinen, S. Kulmala, J. Electroanal. Chem., 2019, 833, 349-356. https://doi.org/10.1016/j.jelechem.2018.12.006
  36. P. Kuosmanen, K. Salminen, M. Pusa, T. Ala-Kleme, S. Kulmala, J. Electroanal. Chem., 2016, 783, 63-67. https://doi.org/10.1016/j.jelechem.2016.10.057
  37. R.J. Palmer, Polyamides, Plastics, in: Encycl. Polym. Sci. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2001.
  38. M.I. Kohan, Nylon plastics handbook, Hanser Publishers, Munich, Germany, 1995.
  39. S. Kulmala, A. Hakanen, P. Raerinne, A. Kulmala, K. Haapakka, Anal. Chim. Acta., 1995, 309(1-3), 197-210. https://doi.org/10.1016/0003-2670(95)00050-A
  40. M. J. Hagmann, Appl. Phys. Lett., 1995, 66(7), 789. https://doi.org/10.1063/1.114189
  41. C.-Z. Ye, C.-X. Zhang, Y.-H. Nie, J.-Q. Liang, Phys. Rev. B., 2007, 76(3).
  42. A. D. Stiff-Roberts, X. H. Su, S. Chakrabarti, P. Bhattacharya, IEEE Photonics Technology Letters, 2004, 16(3), 867-869. https://doi.org/10.1109/LPT.2004.823690
  43. J.-M. Bonard, H. Kind, T. Stockli, L.-O. Nilsson, Solid-State Electronics, 2001, 45(6), 893-914. https://doi.org/10.1016/S0038-1101(00)00213-6
  44. C. L. Duarte, M.H.O. Sampa, P.R. Rela, H. Oikawa, C.G. Silveira, A.L. Azevedo, Radiat. Phys. Chem., 2002, 63(3), 647-651. https://doi.org/10.1016/S0969-806X(01)00560-6
  45. K. Hossain, Y.A. Maruthi, N.L. Das, K.P. Rawat, K.S.S. Sarma, Appl. Water Sci., 2018, 8(1), 1-11. https://doi.org/10.1007/s13201-017-0639-9
  46. C. N. Kurucz, T.D. Waite, W.J. Cooper, Radiat. Phys. Chem., 1995, 45(2), 299- 308. https://doi.org/10.1016/0969-806X(94)00075-1
  47. R. Naumann, F. Lehmann, M. Goez, Angew. Chem. Int. Ed., 2018, 57(4), 1078-1081. https://doi.org/10.1002/anie.201711692
  48. M. H. O. Sampa, S.I. Borrely, B.L. Silva, J.M. Vieira, P.R. Rela, W.A.P. Calvo, R.C. Nieto, C.L. Duarte, H.E.B. Perez, E.S. Somessari, A.B. Lugao, Radiat. Phys. Chem., 1995, 46(4-6), 1143-1146. https://doi.org/10.1016/0969-806X(95)00345-X