• 제목/요약/키워드: Initial Turbulence Intensity

검색결과 20건 처리시간 0.017초

유동분위기에서 메탄올의 연소특성에 관한 연구 (A Study on the Combustion Characteristic of the Methanol Fuel in a Turbulence Mixture)

  • 이중순;이태원;정성식;하종률
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2022-2029
    • /
    • 1995
  • The experiment was performed by using the condenser discharge ignition device in a constant volume combustion chamber for high pressure, equivalent to the TDC of spark ignition engine, which makes the forced turbulent field possible. The conclusions obtained under various initial pressures, initial temperatures, and turbulent conditions of the methanol-air mixture are as follows : As initial pressure, initial temperature of the mixture, and the ignition energy increase, the inflammability limit expands, but the lean inflammability limit decreases as turbulence intensity increases. Combustion duration is shorter in the case of the lower initial pressure, the higher initial temperature, an equivalence ratio of 1.1-1.2, and even though turbulence intensity increases up to optimum value. Maximum combustion pressure increases in turbulent ambience under the same mixture condition, only in the case each optimum turbulence intensity exists under every condition. As the turbulence intensity increases .tau.$_{10}$ proportion increases while the .tau.$_{pr}$ proportion decreases....

2차원 채널 충돌제트에서 난류강도의 변화에 대한 유동 및 열전달 특성 (A Characteristics of Flow and Heat Transfer for Variation of Turbulence Intensity In the Two-Dimensional Channel Impinging Jet)

  • 윤순현;김동건;김문경
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.753-760
    • /
    • 1999
  • Experiments were conducted to investigate the effect of the initial turbulent intensity on the flow and heat transfer characteristics for a two-dimensional impinging jet. A square rod was installed at the nozzle exit to increase initial turbulent intensity. A hot wire probe and thermochromic liquid crystal technique were used to measure the turbulent intensity and the surface temperature. All measurements were made over a range of nozzle-to-plate distance from 1 to 10 at Re=20,000. When the rod is not installed, the maximum stagnation point Nusselt number is occurred at H/B=9. A higher initial turbulent intensity enhanced the heat transfer on the surface. A correlation between stagnation point Nusselt number and turbulent intensity are presented.

댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구 (Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows)

  • 박일룡;정광효
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

복잡지형에서 난류강도를 고려한 풍력발전단지설계 (Wind Farm Design Considering Turbulence Intensity on Complex Terrain)

  • 박미호;고경남;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.1-11
    • /
    • 2013
  • The investigation on wind farm design using CFD technique was carried out to reduce turbulence intensity in a wind farm. A potential wind farm in Gasiri of Jeju Island was selected for the design and the commercial S/W of Meteodyn WT was used for applying CFD technique. The initial layout of wind turbines was derived using WindPRO which is mainly used for wind farm design in Korea. Then, the distribution of turbulence intensity on complex terrain was calculated and visible by Meteodyn WT. Based on the distribution, wind turbines were positioned properly. As a result, wind turbines could be deployed at positions with minimum turbulence intensity as well as maximum Annual Energy Production, AEP, using Meteodyn WT. It is necessary to take into account turbulence intensity in wind farm design to avoid wind turbine failure.

정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge)

  • 최승환;전충환;장연준
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

Spreading of a Lorentz-Gauss Vortex Beam Propagating through Oceanic Turbulence

  • Liu, Dajun;Yin, Hongming;Wang, Guiqiu;Wang, Yaochuan
    • Current Optics and Photonics
    • /
    • 제3권2호
    • /
    • pp.97-104
    • /
    • 2019
  • Based on the extended Huygens-Fresnel principle, the analytical equation for a Lorentz-Gauss vortex beam propagating through oceanic turbulence has been derived. The spreading properties of a Lorentz-Gauss vortex beam propagating through oceanic turbulence are analyzed in detail using numerical examples. The results show that a Lorentz-Gauss vortex beam propagating through stronger oceanic turbulence will spread more rapidly, and the Lorentz-Gauss vortex beam with higher topological charge M will lose its initial dark center more slowly.

정적연소기에서의 메탄-공기 혼합기의 연소특성(2) : 비균질급기 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(2) : Inhomogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.29-36
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of inhomogeneous charge methane-air mixture under several parameters. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to beneath 0.05m/s gradually at 3 seconds. Second mixture is accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the burn rate.

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구 (The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine)

  • 한병주;김창업;강건용;이창식
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF