• Title/Summary/Keyword: Initial Temperature

Search Result 4,256, Processing Time 0.029 seconds

Excimer-Laser Annealing for Low-Temperature Poly-Si TFTs

  • Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.1-3
    • /
    • 2003
  • For excimer laser annealing (ELA), energy density, number of pulses, beam uniformity, and condition of initial amorphous Si (a-Si) films are significant factors contributing to the final microstructure and the performance of low-temperature polycrystalline Si (LTPS) TFTs. Although the process and equipment have been significantly improved, the environmental factors associated with initial amorphous Si (a-Si) films and process conditions are yet to be optimized.

Excimer-Laser Crystallization for Low-Temperature Polycrystalline Si TFTs

  • Kim, Hyun-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.151-152
    • /
    • 2000
  • For excimer laser crystallization (ELC), energy density, number of pulses, beam uniformity, and condition of initial amorphous Si (a-Si) films are significant factors contributing the final microstructure and the performance of low-temperature polycrystalline Si TFTs. The process and equipment have been achieved a significant improvement, but still, environmental factors associated with initial amorphous Si (a-Si) films and process conditions need to be optimized.

  • PDF

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : I. Initial and Temperature Deformation (불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : I. 초기 및 온도 변형)

  • Lee, Dong Hoon;Kim, Ki Hyun;Jang, Seung Yup;Zi, Goangseup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.625-636
    • /
    • 2017
  • This study looked into the behavior of precast concrete track due to temperature variation and initial track deformation and examined the effect of initial deformation and deformation caused by temperature gradient on the stress distribution of slab under train load. In this paper, one of two papers in a series, a finite element analysis model for calculating deformation and stress of precast concrete track was proposed; the temperature distribution and displacements measured at the precast concrete track in the field were compared with the analytical results. The results show that the slab always curled up due to initial deformation; by comparing the measured displacements with the displacements calculated by taking measured temperatures at each depth as input, the effective built-in temperature (EBITD), the temperature difference between the top and bottom of the slab corresponding to the initial deformation, can be estimated. If EBITD is relevantly assumed, the calculated displacements correlate well with the measured ones.

Survival, Physiological Responses, and Histological Changes in Korean Rockfish (Sebastes schlegelii) Exposed to Artificial Increase of Water Temperature (인위적 수온 상승에 노출된 조피볼락(Sebastes schlegelii) 치어의 생존율 및 스트레스 반응)

  • Young Guk Jin;Hyun Woo Gil;Dae-Jung Kim;Hyungkyu Hwang;Hyo-Won Kim
    • Korean Journal of Ichthyology
    • /
    • v.35 no.4
    • /
    • pp.236-243
    • /
    • 2023
  • This study aimed to investigate the survival rates, hematologic responses, and histological responses of juvenile Korean rockfish (Sebastes schlegelii) exposed to artificial increase of water temperature. The water temperature was incrementally raised from the initial 23℃ to 26℃, 28℃, 30℃, and 31℃, with a 1℃ increase every 24 hours. The fish were exposed to each water temperature setting for a period of seven days. No mortality was observed at 26℃ and 28℃. However, at 30℃, mortality began on the 4th day of exposure, with an overall survival rate of 1.5% at the end of the seventh day. At 31℃, mortality occurred as early as the first day of exposure, and all fish had perished by the second day. Plasma cortisol and glucose concentrations increased as water temperature rose, with a significant decrease observed at 31℃. No significant difference in plasma GPT concentration was observed across the various experimental temperatures. In contrast, plasma GOT concentration significantly increased at 31℃. Histological examination revealed that both the liver and gills exhibited normal histology at the initial temperature of 23℃ and at 26℃. However, at 28℃ hepatocellular hypertrophy and gill lamellar epithelial hyperplasia and epithelial cell lifting were observed. At 30℃, hepatocellular condensation and gill lamellar fusion were noted. Finally, at 31℃, severe histological changes were observed, including hepatocellular necrosis, liver congestion, and gill filament necrosis.

Origin of the Initial Permeability of Manganese-Zinc Ferrite Polycrytals (Mn-Zn 페라이트 다결정의 조성에 따른 투자율의 변화 기구)

  • 변순천;제해준;고경현;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • The origin of the variation of initial permeability in manganese-zinc ferrite polycrystals with a content of hematite was investigated. Initial permeability showed maximum with hematite content while there was no significant change in microstructure. Saturation magnetization increased with hematite content. So the variation of initial permeability was not explained on the basis of microstructural change or saturation magnetization. Temperature dependence of initial permeability revealed magnetocrystalline anisotropy was the origin of the variation of initial permeability. The change in magnetocrystalline anisotropy was ascribed to the variation in ferrous ion concentration. Therefore the variation of initial permeability in manganese-zinc ferrite polycrystals with a content of hematite was due to ferrous ion concentration via magnetocrystalline anisotropy.

  • PDF

Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed (풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

Joule Heating Effects and Initial Resistance in Electromigration Test (EM시험에서의 Joule Heating 영향 및 초기저항값)

  • Ju, Cheol-Won;Gang, Hyeong-Gon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.436-441
    • /
    • 1999
  • Joule heating effect in EM(Electromigration) test were performed on a bend test structure. EM test is done under high current densities(1.0-2.5MA/cm2), which leads to joule heating. Since joule heating is added to the controlled oven(stress) temperature, themetal line temperature is higher than the stress temperature. The increase in the stress temperature due to joule heating is important because EM phenomena and metal line failure are related to the stress temperature. In this paper, metal line was stressed with a current density of 1.0 MA/$cm^2$, 1.5MA/$cm^2$, 2.0MA/$cm^2$, 2.5MA/$cm^2$, for 1200 sec and temperature increase due to joule heating was less than $10^{\circ}C$. Also it took 30 minutes for the metal line to equalized with oven temperature. Recommendations are given for the EM test to determine the initial resistance of EM test structure under stress temperature and current density.

  • PDF

A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship (35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구)

  • Kim, H.J.;Lee, J.J.;Koh, S.W.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics (기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토)

  • Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

Response of germination rate and seed moisture contents to storage temperature and frequency of seed banking on seed soybean (Glycine max) for storage period

  • Na, Young-wang;Lee, Young-yi;Yi, Jung-yoon;Son, Eun-ho;Park, Hong-jae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.288-288
    • /
    • 2017
  • The seeds of soybean (Glycine max) were treated with different storage temperature for this study. The seeds of 3 accessions of soybean varieties in aluminum foil pack were used as materials. Storage temperature applied were $-18^{\circ}C$ and room temperature and seed banking (input after 3 days from output) frequencies were every 1, 6, and 12 month respectively for 9 years of storage period. As results seed banking frequency no affected to germination rate and seed moisture contents at $-18^{\circ}C$ storage room for seeds of soybean after 9 years. Germination rate of soybean seeds was changed from 96.2 % to 95.6 % averagely after 9 years of freezing ($-18^{\circ}C$) storage period. There were no differences in decreasing rate by number of seed banking frequency in soybean seeds. On the other hand, at room temperature germination rate of soybean seeds was decreased from 96.2 % to 27.3 % after 9 years which was decreased sharply to 55 % of initial viability after 6 years. The average rate of annual decrease of germination rate in soybean seeds was 38 % of initial viability at room temperature. Initial moisture contents of soybean seeds were 7.3 % and changed to 7.1 % at $-18^{\circ}C$ while it changed from 7.4 % to 7.0 % at room temperature after 9 years of storage period.

  • PDF