• Title/Summary/Keyword: Initial Stiffness

Search Result 739, Processing Time 0.023 seconds

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Nonlinear hysteretic behavior of hybrid beams consisted of reinforced concrete and steel (철근콘크리트와 철골조로 이루어진 혼합구조보의 비선형 이력거동에 관한 연구)

  • 이은진;김욱종;문정호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes an analytical study on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. Two types of analytical model, Polygonal Model[PM] and Hybrid Model[HM], were used to represent the nonlinear hysteretic behavior PM used three parameters, HM used an additional parameter to consider the initial stiffness reduction. The parameters calibrated comparing the hysteretic performance obtained from experiments. The purpose of this study is to develop an analytical model which can take into account the initial stiffness reduction of the hybrid members and to represent exactly the hysteretic performance for the hybrid structures with RC and steel. The analytical study showed PM tends to overestimate initial stiffness and strength. However, HM which is capable to consider the initial stiffness reduction gave good prediction on initial stiffness, post-yielding performance, strength, pinching response and so on.

  • PDF

Elastic stiffness of stud connection in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.419-433
    • /
    • 2021
  • In composite structures, shear connectors are crucial components to resist the relative slip between the steel and concrete, and thereby to achieve the composite actions. In the service stage, composite structures are usually in elastic state, so the elastic stiffness of the shear connection is a quite important parameter in the structural analysis of composite structures. Nevertheless, the existing studies mainly focus on the load-slip relationship rather than the tangent stiffness at the initial elastic stage. Furthermore, when composite beams subjected to torque or local load, shear connections are affected by both tensile force and shear force. However, the stiffness of shear connections under combined effects appears not to have been discussed hitherto. This paper investigates the initial elastic stiffness of stud connections under combined effects of biaxial forces. The initial expression and the relevant parameters are obtained by establishing a simplified analytical model of the stud connection. Afterwards, parametric finite element analysis is performed to investigate the effects of the relevant factors, including the stud length, stud diameter, elastic modulus of concrete, elastic modulus of steel and volume ratio of reinforcement. The feasibility of the proposed modelling has been proved by comparing with sufficient experimental tests. Based on the analytical analysis and the extensive numerical simulations, design equations for predicting the initial elastic stiffness of stud connections are proposed. The comparison between the equations and the data of finite element models demonstrates that the equations are accurate enough to serve for engineering communities.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method (Component method를 이용한 철골 보-기둥 죠인트의 강성평가)

  • 양철민;조지은;김영문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Mechanical Properties and Comparisons of Cerclage Wires of Various Diameters in Different Knot Methods

  • Jang, Aram;Kim, Jieyoo;Park, Ji-Hun;Yoon, Eunchae;Lee, Dongbin;Lee, Jae-Hoon
    • Journal of Veterinary Clinics
    • /
    • v.39 no.4
    • /
    • pp.149-155
    • /
    • 2022
  • The aim of this study was to compare the mechanical properties of 0.6 and 0.8 mm cerclage wires with the 1.0 mm cerclage wire in the twist, single-loop, double-loop, double-wrap, and loop/twist knot methods. Six stainless steel cerclage wires of various diameters in different knot methods were tied round a customized jig mounted on a load testing machine. The initial tension, initial stiffness, and yield load were evaluated. The failure mode of each cerclage was observed. For each wire size, the double-loop, double-wrap, and loop/twist knots showed significantly greater initial stiffness, and yield load than those seen with twist and single-loop knots. The single-loop knot showed the least initial stiffness regardless of the diameter. As the cerclage wire diameter increased, the cerclage tended to show significantly greater initial stiffness, and yield load. Failure modes varied depending on the knot configurations. Single-loop knots of smaller-diameter wires less than 1 mm had similar or lower initial tension, initial stiffness, and yield load than a twist knot. Owing to the variance in mechanical properties, the clinical application of the knot type should depend on the diameter of the cerclage wire.

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.