• Title/Summary/Keyword: Initial Curve

Search Result 830, Processing Time 0.025 seconds

APPROXIMATE TANGENT VECTOR AND GEOMETRIC CUBIC HERMITE INTERPOLATION

  • Jeon, Myung-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper we introduce a discrete tangent vector of a polygon defined on each vertex by a linear combination of forward difference and backward difference, and show that if the polygon is originated from a smooth curve then direction of the discrete tangent vector is a second order approximation of the direction of the tangent vector of the original curve. Using this discrete tangent vector, we also introduced the geometric cubic Hermite interpolation of a polygon with controlled initial and terminal speed of the curve segments proportional to the edge length. In this case the whole interpolation is $C^1$. Experiments suggest that about $90\%$ of the edge length is the best fit for the initial and terminal speeds.

Evaluation of RPV according to alternative fracture toughness requirements

  • Lee, Sin-Ae;Lee, Sang-Hwan;Chang, Yoon-Suk
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • Recently, US NRC revised fracture toughness requirements as 10CFR50.61a to reduce the conservatism of 10CFR50.61. However, unlike previous studies relating to the initial regulation, structural integrity evaluations based on the alternative regulation are not sufficient. In the present study, PTS and P-T limit curve evaluations were carried out by using both regulations and resulting data were compared. With regard to the PTS evaluation, the results obtained from the alternative requirements were satisfied with the criterion whereas those obtained from the initial requirements did not meet the criterion. Also, with regard to the P-T limit curve evaluation, operating margin by 10CFR50.61a was greater than that by 10CFR50.61.

Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves

  • Kim, D.K.;Choi, H.S.;Shin, C.S.;Liew, M.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.881-896
    • /
    • 2015
  • In this study, a method for fatigue performance estimation of deepwater steel catenary riser (SCR) under short-term vortex-induced vibration was investigated for selected S-N curves. General tendency between S-N curve capacity and fatigue performance was analysed. SCRs are generally used to transport produced oil and gas or to export separated oil and gas, and are exposed to various environmental loads in terms of current, wave, wind and others. Current is closely related with VIV and it affects fatigue life of riser structures significantly. In this regards, the process of appropriate S-N curve selection was performed in the initial design stage based on the scale of fabrication-related initial imperfections such as welding, hot spot, crack, stress concentration factor, and others. To draw the general tendency, the effects of stress concentration factor (SCF), S-N curve type, current profile, and three different sizes of SCRs were considered, and the relationship between S-N curve capacity and short-term VIV fatigue performance of SCR was derived. In case of S-N curve selection, DNV (2012) guideline was adopted and four different current profiles of the Gulf of Mexico (normal condition and Hurricane condition) and Brazil (Amazon basin and Campos basin) were considered. The obtained results will be useful to select the S-N curve for deepwater SCRs and also to understand the relationship between S-N curve capacity and short-term VIV fatigue performance of deepwater SCRs.

A Study on the Base Flow Recession Curve Development in the Ssangchi Basin of the Sumjin River (섬진강 쌍치유역의 기저유출 감수곡선식 개발에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • The purpose of this study is establish a recession curve for low flow discharge in the Ssangchi basin. For this study, we selected 34 recession segments and calculated recession constants and initial discharges. The average initial discharge is 0.40 ㎥/sec and the recession constant is 0.86. With using the initial discharge and the recession constant, We got the non-linear recession cure equation. This non-linear equation is more reasonable fit than the linear equation of the recession curve for low flow.

  • PDF

Image Segmentation of Special Area Using the Level Set (레벨셋을 이용한 특정 영역의 영상 세그먼테이션)

  • Joo, Ki-See;Choi, Deog-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.967-975
    • /
    • 2010
  • Image segmentation is one of the first steps leading to image analysis and interpretation, which is to distinguish objects from background. However, the active contour model can't exactly extract the desired objects because the phase only is 2. In this paper, we propose the method which can find the desired contours by composing the initial curve near the objects which have intensities of special range. The initial curve is calculated by the histogram equalization, the Gaussian equalization, and the threshold. The proposed method reduce the calculation speed and exactly detect the wanted objects because the initial curve set near by interested area. The proposed method also shows more efficient than the active contour model in the results applied the CT and MR images.

Frictional effects on the cyclic response of laterally loaded timber fasteners

  • Allotey, Nii;Foschi, Ricardo
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Foschi's connector model is used as a basic component in the development of nonlinear analysis programs for timber structures. This paper presents the extension of the model to include the effect of shaft frictional forces. The wood medium is modeled using the Foschi embedment model, while shaft friction is modeled using an elastic Coulomb-type friction model. The initial confining pressure for the case of driven fasteners is accounted for by a lateral shift of the load-embedment curve. The model is used to compute the cyclic response of both driven and inserted fasteners. The results obtained from the cases studied indicate that initial confining pressure and friction do not have a significant effect on the computed hysteretic response, however, they significantly affect the computed amount of fastener withdrawal. This model is particularly well-suited for modeling the hysteretic response of shear walls with moderate fastener withdrawal under lateral cyclic or earthquake loading.

Prediction of Fracture Energy of Concrete

  • Oh, Byung-Hwan;Jang, Seung-Yup;Byun, Hyung-Kyun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.211-221
    • /
    • 1999
  • A method to determine the fracture energy of concrete is investigated. The fracture energy may be calculated from the area under the complete load-deflection curve which can be obtained from a stable three-point bend test. Several series of concrete beams have been tested. The Present experimental study indicates that the fracture energy decreases as the initial notch-to-beam depth ratio increases Some problems to be observed to employ the three-point bend method are discussed. The appropriate ratio of initial notch-to-beam depth to determine the fracture energy of concrete is found to be 0.5. It is also found that the influence of the self-weight of a beam to the fracture energy is very small A simple and accurate formula to predict the fracture energy of concrete is proposed.

  • PDF

Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs

  • He, Yuliang;Zhuang, Jie;Hu, Lipu;Li, Fuyou;Yang, Ying;Xiang, Yi-qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.109-121
    • /
    • 2022
  • Twelve push-out test specimens were conducted with various parameters to study the static and fatigue performance of a new through-bolt shear connector transferring the shear forces of interface between prefabricated hybrid fiber reinforced concrete (HFRC) slabs and steel girders. It was found that the fibers could improve the fatigue life, capacity and initial stiffness of through-bolt shear connector. While the bolt-hole clearance reduced, the initial stiffness, capacity and slippage of through-bolt shear connector increased. After the steel-concrete interface properties were improved, the initial stiffness increased, and the capacity and slippage reduced. Base on the test results, the equation of the load-slip curve and capacity of through-bolt shear connector with prefabricated HFRC slab were obtained by the regression of test results, and the allowable range of shear force under fatigue load was recommended, which could provide the reference in the design of through-bolt shear connector with prefabricated HFRC slabs.

On geometry dependent R-curve from size effect law for concrete-like quasibrittle materials

  • Zhao, Yan-Hua;Chang, Jian-Mei;Gao, Hong-Bo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.673-686
    • /
    • 2015
  • R-curve based on the size effect law previously developed for geometrically similar specimens (geometry type III) is extended to geometries with variable depth (geometry type I) as well as with variable notch (geometry type II), where the R-curve is defined as the envelope of the family of critical strain energy release rates from specimens of different sizes. The results show that the extended R-curve for type I tends to be the same for different specimen configurations, while it is greatly dependent on specimen geometry in terms of the initial crack length. Furthermore, the predicted load-deflection responses from the suggested R-curve are found to agree well with the testing results on concrete and rock materials. Besides, maximum loads for type II specimen are predicted well from the extended R-curve.

Evaluation of Flow Stress of Metal up to High Strain (금속소재의 고변형률 영역 유동응력선도 평가)

  • Lee, S.K.;Lee, I.K.;Lee, S.Y.;Lee, S.M.;Jeong, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.