• Title/Summary/Keyword: Initial Commissioning

Search Result 18, Processing Time 0.024 seconds

A Study on Building Integrated Design and Commissioning of GHP System (지열히트펌프 시스템의 건물통합설계 및 커미셔닝에 관한 연구)

  • Kim, Ji-Young;Jang, Jea-Chul;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.1-169.1
    • /
    • 2010
  • Geothermal heat pump(GHP)system has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the economics and system reliability has been key issues and barriers to insure a better system performance as designed originally. The building integrated designs of geothermal heat pump system are test and optimize GHP system by evaluating its performance in virtual reality. System design is an iterative process that will help optimize the cost efficiency of the system. One of the primary goals is to minimize the energy imbalance between the amount of energy extracted from the ground and the energy reject to it. This will reduce the land area required to install the GHX, reduce the cost of installing it and ensure the long-term efficiency of the system. Commissioning is the process of ensuring that are designed, installed, functionally tested, and capable of being operated and maintained to performance in conformity with design intent. In this paper, Study on introduction of Initial commissioning method of Geothermal Heat Pump(GHP) system using ISO performance data has been introduced. Also KIER GHP Simulator is used to simulate actual heat pimp operating condition and test commissioning method. Result should that the experiment data base could verify the applicability of the commissioning method, and also were able to suggest a better ways to GHP commissioning.

  • PDF

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

Commissioning of neutron triple-axis spectrometers at HANARO

  • Hiraka, Haruhiro;Lee, Jisung;Jeon, Byoungil;Seong, Baek-Seok;Cho, Sangjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2138-2150
    • /
    • 2020
  • We report the status of the cold neutron triple-axis spectrometer (Cold TAS) and thermal neutron triple-axis spectrometer (Thermal TAS) installed at HANARO. Cold TAS, whose specifications are standard across the world, is in the final phase of commissioning. Proper instrument operation was confirmed through a feasibility study of phonon measurements and data analyses with resolution convolution. In contrast, Thermal TAS is in the initial phase of commissioning, and improvement of the monochromator drum is now in progress from the viewpoint of radiation shielding. In addition, we report recent activities in the development of neutron basic elements, that is, film-coated Si-wafer collimators, which are promising for use in triple-axis spectroscopy, particularly in Cold TAS.

Commissioning results of the KSTAR helium refrigeration system (KSTAR 저온헬륨설비 시운전 결과)

  • Cho, K.W.;Chang, H.S.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, Y.S.;Bak, J.S.;Yang, S.H.;Fauve, E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

Effects of Ambient Temperature Change on the Internal Pressure Change of Multi-Layered Subsea Pipeline (주위 온도변화가 다층구조 해저 파이프라인 내부 압력변화에 미치는 영향)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.772-779
    • /
    • 2019
  • The subsea pipeline has received considerable attention as a high-value-added industry linked to the energy and steel industries including natural resource development. The design and installation of the subsea pipeline require a variety of key technologies to carry out the project. In particular, a thorough pre-verification process through pre-commissioning is essential for the safe operation of the subsea pipeline. The hydrotesting stage in the pre-commissioning process of the subsea pipeline is known to be affected significantly by the ambient temperature change; however, there is a little study based on the theoretical and numerical approach. In this study, the method of predicting the internal temperature change using the transient heat transfer method for the stage of hydrotesting during the pre-commissioning process of the subsea pipeline and the prediction method of the pressure variation in the pipeline using it were proposed. The predicted results were compared with field test results and its effectiveness was verified. The proposed analysis procedure is expected to contribute to the productivity improvement of the subsea pipeline installation project by enabling the prediction of pressure variation through pipeline heat transfer simulation from the initial design stage of the subsea pipeline installation project.

A Comparative Study on Management Evaluation and Re-certification System of G-SEED, BREEAM, LEED (국내외 녹색건축인증제의 유지관리 및 재인증 제도에 대한 비교 연구)

  • Hyun, Eun Mi;Kim, Yong Sik
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2014
  • As time passes, the aging of the plant building, the building's energy performance degradation than the initial plan does not express a situation could arise. This year, the certification of buildings certified in 2009 has expired for measures such as the situation required. In this study, management of national and international green building certification and re-certification was compared in two ways. First, the evaluation of green building certification system management assessments were compared. Second, the green building certification system for the re-certification analysis. As a result, G-SEED was not reflected life-cycle of building in management assessment and the commissioning of G-SEED is the UK and the U.S and other concepts of evaluation. In addition, the re-certification system is insufficient about substantial energy consumption of buildings. In this study, the revised the management assessments in conjunction with the re-certification system to manage the building is proposed to improve. In addition, the current evaluation of the existing building certification "existing building" and "building the first certified" as it is more efficient to separate the information into assessment was judged. Green building certification system to meet the purpose of management and operation, and disposal phases of the building to promote energy conservation and sustainability in order to the management a systematic and detailed evaluation and re-certification system developed for the revision of the specific items required and future research want to continue.

Importance of Preliminary Validation of Exterior Wall Thermal Resistance in the Evaluation Context of Building Energy Retrofit Projects (그린리모델링 성과 평가 관점에서 본 준공 시점 단열 성능 검증의 중요성)

  • Seungmin Lim;Soyeon Kim;Changoh Kang;Gain Kim;Jongyeon Lim
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2024
  • This study investigates the thermal conductivity and density of expanded polystyrene insulation materials collected from buildings under going energy retrofit projects. Due to the absence of initial thermal conductivity data, determining precise long-term patterns was challenging. Analysis based on design documents revealed that expanded polystyrene insulation maintained consistent performance over ten years. Notably, the thermal conductivity measurements of insulation samples of the same grade and age varied significantly. Additionally, the insulation density was found to be substantially below the standard specified in the design documents. The results of the experiment indicate that performance management during both construction and operation phases is lacking. It is crucial to apply building commissioning, which involves performance verification throughout the building's life cycle, to properly evaluate building energy performance improvements, such as building energy retrofit projects.

A Study of phase controlled rectifier design of excitation system for thermal power plant (화력발전소 여자시스템 위상제어 정류기 설계에 관한 연구)

  • Lee, J.H.;Ryu, H.S.;Lim, I.H.;Song, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1015-1017
    • /
    • 2002
  • This is the study on static excitation system of synchronous generator of large capacity in new model, which was developed by KEPRI using triple redundant digital method, associate three bridges of thyristor phase controlled rectifier. This paper will discuss the design conception and the application results of system which includes the power control devices(thyristors, GTO) and power excitation potential transformer. The multi-paralleling thyristor bridge converters of N+1 method have firing circuit. The initial product manufactured by proposed design in the study is in commercial operation, completing installation and commissioning in 400MW Thermal Power Plant. The performance test is done in practical technique.

  • PDF