• 제목/요약/키워드: Inhomogeneous Wave Equation

검색결과 26건 처리시간 0.026초

SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.305-320
    • /
    • 2015
  • The present paper is devoted to study SH-wave propagation in heterogeneous layer laying over an inhomogeneous isotropic elastic half-space. The dispersion relation for propagation of said waves is derived with Green's function method and Fourier transform. As a special case when the upper layer and lower half-space are homogeneous, our derived equation is in agreement with the general equation of Love wave. Numerically, it is observed that the velocity of SH-wave increases with the increase of inhomogeneity parameter.

Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations

  • Tao, Ming;Chen, Zhenghong;Li, Xibing;Zhao, Huatao;Yin, TuBing
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.285-296
    • /
    • 2016
  • The investigation of stress wave propagation in a medium with initial stress has very important application in the field of engineering. However, the previous research less consider the influence of initial stress gradient on wave propagation. In the present paper, the governing equation of wave propagation in elastic continuum material with inhomogeneous initial stress is derived, which indicated that the inhomogeneous initial stress changed the governing equation of wave propagation. Additionally, the definite problem of wave propagation in material with initial stress gradient is verified by using mathematical physics method. Based on the definite problem, the elastic displacement-time relationship of wave propagation is explored, which indicated that the inhomogeneous initial stress changed waveform and relationship of displacement-time histories. Furthermore, the spall process of blasting wave propagation from underground to earth surface is simulated by using LS-DYNA.

Dispersion of axisymmetric longitudinal waves in a "hollow cylinder + surrounding medium" system with inhomogeneous initial stresses

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.597-615
    • /
    • 2019
  • The paper studies the dispersion of the axisymmetric longitudinal wave propagating in the "hollow cylinder + surrounding medium" system with inhomogeneous initial stresses caused by the uniformly distributed radial compressional forces acting at infinity. Up to now in the world literature, there exist only a few investigations related to the wave dispersion in a hollow cylinder with inhomogeneous initial stresses. Therefore, this paper is one of the first attempts in this field in the sense of the development of investigations for the case where the cylinder is surrounded with an infinite medium. The three-dimensional linearized theory of elastic waves is used for describing the considered wave propagation problem and, for a solution to the corresponding mathematical problem, the discrete-analytical solution method is developed and employed. The corresponding dispersion equation is obtained and this equation is solved numerically and, as a result of this solution, the dispersion curves are constructed for the first and second modes. By analyzing these curves, the character of the influence of the inhomogeneous initial stresses on the dispersion curves is established. In particular, it is established that as a result of the inhomogeneity of the initial stresses both new dispersion curves and the "band gap" for the wave frequencies can appear.

비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형 (Inhomogeneous Helmholtz equation for Water Waves on Variable Depth)

  • 김효섭;장창환
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권3호
    • /
    • pp.174-180
    • /
    • 2010
  • 변동 수심에서의 파랑변형을 비균질 Helmholtz 방정식을 이용하여 계산하였다. 포텐셜 함수가 존재한다고 가정하였으며, 변수분리를 적용하였다. 본 논문에서는 조화파만을 고려하였다. 포텐셜 함수로 구성된 지배방정식을 정수면에 직접 적용하였고, 변동 수심에 대한 비균질 Helmholtz 방정식을 얻었다. 파랑의 진폭과 위상차로 얻어진 복합 포텐셜 함수의 지배방정식을 실수형 변수로 된 두 방정식으로 분리하였다. 분리된 방정식들은 각각 1차와 2차 상미분 방정식이며, 이 방정식들을 단순한 형태의 중앙차분 수치기법을 이용하여 차분식으로 변형하였다. 측면 경계조건에서의 파랑의 진폭, 진폭경사, 그리고 위상경사를 경계면에 적용하여 전방진행방법으로 전 영역에서 해를 구하였다 Booij의 경사면 있는 저면의 경우와 Bragg의 물결모양이 있는 저면의 경우에 적용하였다. 본 연구로 도출된 비균질 Helmholtz 방정식은 완전 선형방정식 계산 결과, Massel의 수정 완경사 방정식, 그리고 Berkhoff의 완경사 방정식의 적용 결과와 비교하였으며, 만족스러운 결과를 얻었다.

화염의 비정상 응답 특성 연구-화염 전달 함수 산출 (A Study on Unsteady Responses of Flames - Calculation of Flame Transfer Function in a Subscale Combustor)

  • 손채훈;;김영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.107-108
    • /
    • 2015
  • The acoustic optimization of a swirl coaxial jet injector mounted upstream a combustion chamber is investigated to tackle combustion instabilities. The least damped modes are extracted with the help of the dynamic mode decomposition (DMD). The sensitivity of the heat release perturbation to the velocity perturbation for the second longitudinal mode is investigated by combining the Crocco's equation and the inhomogeneous wave equation and computing the flame transfer function (FTF). DMD and FTF results agree in terms of the optimized injector length.

  • PDF

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

수중물체의 운동에 의한 장수파의 생성 (Generation of Long Water Waves by Moving Submerged Bodies)

  • 이승준
    • 대한조선학회지
    • /
    • 제24권2호
    • /
    • pp.55-61
    • /
    • 1987
  • The wave system due to a moving submerged body is investigated both theoretically and numerically. Boussinesq equation, which is derived under the assumption that the effects of nonlinearity and wave dispersion are of the same order, is generalized to take the forcing agency into account. Furthermore, under the more restrive assumption that the disturbance is of higher order, inhomogeneous Korteweg-de Vries equation is derived. These equations are solved numerically to obtain the generated wave system and the wave-making resistance. These results are compared with those given by the linear theory.

  • PDF

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.