Inhomogeneous Helmholtz equation for Water Waves on Variable Depth

비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형

  • Kim, Hyo-Seob (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Jang, Chang-Hwan (Department of Civil and Environmental Engineering, Kookmin University)
  • 김효섭 (국민대학교 건설시스템공학부) ;
  • 장창환 (국민대학교 건설시스템공학부)
  • Received : 2010.05.28
  • Accepted : 2010.07.01
  • Published : 2010.08.25

Abstract

The inhomogeneous Helmholtz equation is introduced for variable water depth and potential function and separation of variables are introduced for the derivation. Only harmonic wave motions are considered. The governing equation composed of the potential function for irrotational flow is directly applied to the still water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing the wave amplitude and wave phase gradient the governing equation with complex potential function is transformed into two equations of real variables. The transformed equations are the first and second-order ordinary differential equations, respectively, and can be solved in a forward marching manner when proper boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of equations. The equation set is applied to two test cases, Booij’ inclined plane slope profile, and Bragg’ wavy bed profile. The present equations set is satisfactorily verified against other theories including the full linear equation, Massel's modified mild-slope equation, and Berkhoff's mild-slope equation etc.

변동 수심에서의 파랑변형을 비균질 Helmholtz 방정식을 이용하여 계산하였다. 포텐셜 함수가 존재한다고 가정하였으며, 변수분리를 적용하였다. 본 논문에서는 조화파만을 고려하였다. 포텐셜 함수로 구성된 지배방정식을 정수면에 직접 적용하였고, 변동 수심에 대한 비균질 Helmholtz 방정식을 얻었다. 파랑의 진폭과 위상차로 얻어진 복합 포텐셜 함수의 지배방정식을 실수형 변수로 된 두 방정식으로 분리하였다. 분리된 방정식들은 각각 1차와 2차 상미분 방정식이며, 이 방정식들을 단순한 형태의 중앙차분 수치기법을 이용하여 차분식으로 변형하였다. 측면 경계조건에서의 파랑의 진폭, 진폭경사, 그리고 위상경사를 경계면에 적용하여 전방진행방법으로 전 영역에서 해를 구하였다 Booij의 경사면 있는 저면의 경우와 Bragg의 물결모양이 있는 저면의 경우에 적용하였다. 본 연구로 도출된 비균질 Helmholtz 방정식은 완전 선형방정식 계산 결과, Massel의 수정 완경사 방정식, 그리고 Berkhoff의 완경사 방정식의 적용 결과와 비교하였으며, 만족스러운 결과를 얻었다.

Keywords

References

  1. Berkhoff, J.C.W. 1973. Computation of combined refraction-diffraction. Proc. 13th Intl. Conf. on Coastal Engineering, July 1972, Vancouver, Canada, pp. 471-490. ASCE.
  2. Booij, N. 1983. A note on the accuracy of the mild-slope equation. Coastal Engineering. 7, 191-203. https://doi.org/10.1016/0378-3839(83)90017-0
  3. Chamberlain, P.G., Porter, D. 1995. The modified mild-slope equation. J. Fluid Mech. 291, 393-407. https://doi.org/10.1017/S0022112095002758
  4. Copeland, G.J.M. 1985. A practical alternative to the mild-slope wave equation. Coastal Engineering. 9, 125-149. https://doi.org/10.1016/0378-3839(85)90002-X
  5. Hsiao, S.S., Weng, W.K. and Chiu, Y.F. 1998. Wave forces on a circular island using perturbation - DRBEM. Eighth International Offshore and Polar Engineering Conference, Montreal, Canada.
  6. Kim, H., Jung, B. and Lee, Y 2009. A linear wave equation over mild-sloped bed from double integration. J. Korean Society for Marine Environmental Engineering. 12(3), 165-172.
  7. Kim, J.W., Bai, K.J. 2004. A new complementary mild-slope equation. J. Fluid Mech. 511, 25-40. https://doi.org/10.1017/S0022112004007840
  8. Kirby, J.T. 1986. A general wave equation for waves over rippled beds. J. Fluid Mechanics. 162, 171-186. https://doi.org/10.1017/S0022112086001994
  9. Luke, J.C. 1967. A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395-397. https://doi.org/10.1017/S0022112067000412
  10. Manolis, G.D. and Shaw, R.P. 1997. Fundamental solutions to Helmholtz's equation for inhomogeneous media by a frrst-order differential equation system. Soil Dynamics and Earthquake Engineering. 16, 81-94. https://doi.org/10.1016/S0267-7261(96)00040-1
  11. Massel, S.R. 1993. Extended reflection-diffraction equation for surface waves. Coastal Engineering. 19, 97-126. https://doi.org/10.1016/0378-3839(93)90020-9
  12. Porter, D., Staziker, D.J. 1995. Extentions of the mild-slope equation. J. Fluid Mech. 300, 367-382. https://doi.org/10.1017/S0022112095003727
  13. Park, W.S., Lee, D.S., Oh, Y.M., Jeong, W.M. 1991. Infinite elements for analysis of diffraction and radiation problems in the vertical plane. J. Korean Soc. Coastal Ocean Engineers, 3 (4), 235-243 (in Korean).
  14. Rather, A.C. 1979. On the parabolic equation method for waterwave propagation. J. Fluid Mech. 95, 159-176. https://doi.org/10.1017/S0022112079001397
  15. Sub, K.D., Lee, C., Park, W.S. 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering. 32, 91-117. https://doi.org/10.1016/S0378-3839(97)81745-0