• Title/Summary/Keyword: Inhibition of fungal growth

Search Result 156, Processing Time 0.029 seconds

In vitro and in vivo Effects of Extracts of Lentinus edodes on Tumor Growth in a Human Papillomavirus 16 Oncogenes-transformed Animal Tumor Model -Apoptosis-mediated Tumor Cell Growth Inhibition- (자궁경부암동물세포에서 표고버섯의 in vitro 및 in vivo 항암효과 -Apoptosis에 의한 종양세포주의 성장억제-)

  • Park, Jeong-Min;Lee, Sung-Hyun;Kim, Jung-Ok;Park, Hong-Ju;Park, Jae-Bok;Sin, Jeong-Im
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • Fungal products indirectly mediate anti-tumor effects in vitro and in vivo. To investigate whether Lentinus edodes might possess direct anti-tumor substance, L. edodes was extracted and tested on human papillomavirus (HPV) 16 oncogenes-associated animal tumor cells (TC-1) and in an animal tumor model. Only water extract displayed direct anti-proliferative effects in TC-1 tumor cells in vitro. This inhibition was dose-dependent, and inhibitory concentration ($IC_{50}$) was $800\;{\mu}g/mL$. Fungal extracts also showed growth inhibition to human cervical cancer cells (CaSki and HeLa) similarly to TC-1 tumor cells. When fungal extracts were added at a high dose (1.5 mg/mL), cell growth was inhibited within 6 hr following extract treatment. Cell growth inhibition was blocked by heat treatment, but not by low pH, which is indicative of heat sensitivity of this anti-proliferative substance. Cell growth suppression was mediated by apoptosis, as determined by Annexin V and propidium iodide staining. When challenged with TC-1 cells, direct intratumoral injection of fungal extracts resulted in some positive effect on tumor growth inhibition, as compared to oral delivery. Results suggest that heat labile substance of L. edodes suppresses growth of HPV oncogenes-associated tumor cells through apoptosis.

Fungicide Sensitivity among Isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti Species Complex Infecting Bell Pepper in Trinidad

  • Ramdial, Hema;Abreu, Kathryn De;Rampersad, Sephra N.
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Bell pepper is an economically important crop worldwide; however, production is restricted by a number of fungal diseases that cause significant yield loss. Chemical control is the most common approach adopted by growers to manage a number of these diseases. Monitoring for the development to resistance to fungicides in pathogenic fungal populations is central to devising integrated pest management strategies. Two fungal species, Fusarium incarnatum-equiseti species complex (FIESC) and Colletotrichum truncatum are important pathogens of bell pepper in Trinidad. This study was carried out to determine the sensitivity of 71 isolates belonging to these two fungal species to fungicides with different modes of action based on in vitro bioassays. There was no significant difference in log effective concentration required to achieve 50% colony growth inhibition ($LogEC_{50}$) values when field location and fungicide were considered for each species separately based on ANOVA analyses. However, the $LogEC_{50}$ value for the Aranguez-Antracol locationfungicide combination was almost twice the value for the Maloney/Macoya-Antracol location-fungicide combination regardless of fungal species. $LogEC_{50}$ values for Benomyl fungicide was also higher for C. truncatum isolates than for FIESC isolates and for any other fungicide. Cropping practices in these locations may explain the fungicide sensitivity data obtained.

In vivo Anti-fungal Activity of the Essential Oil Fraction from Thymus Species and in vitro Synergism with Clotrimazole

  • Kim, Ji-Hyun;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.258-262
    • /
    • 2007
  • The antifungal activity of the essential oil fraction from Thymus magus, and its major component thymol, against Candida albicans was investigated in vitro and in vivo. The combined effects of the oils and clotrimazole, a commonly used antifungal drug for treatment of external candidiasis, were evaluated in this study. In experimental vaginal candidiasis the essential oil fraction of T. magnus resulted in relatively milder inhibition of fungal growth following the inoculation of test mice compared to clotrimazole. However, new fungal growth was not detected up to 12 days after cessation of treatment. In contrast, in a similar experiment using clotrimazole, C. albicans was detected in the $12^{th}$ day post-treatment with the sample. This result indicates that T. magnus oil could be a promising drug to control vaginal candidiasis. In checkerboard titer tests, the combination of clotrimazole with the essential oil fraction of T. magus or T. quinquecostatus resulted in significant synergism, with FIC indices between 0.14 and 0.27 against C. albicans, while clotrimazole combined with thymol, the major component of these oils, produced only an additive effect, with FIC indices ranging between 0.50 and 1.00. Thus, the prominent synergistic effects of clotrimazole combined with T. magus essential oil indicate that these compounds may be an effective treatment for C. albicans infections.

Isolation of Lichen-forming Fungi from Hungarian Lichens and Their Antifungal Activity Against Fungal Pathogens of Hot Pepper Anthracnose

  • Jeon, Hae-Sook;Lokos, Laszlo;Han, Keon-Seon;Ryu, Jung-Ae;Kim, Jung-A;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.38-46
    • /
    • 2009
  • Lichen-forming fungi (LEF) were isolated from 67 Hungarian lichen species from ascospores or thallus fragments. LFF were successfully isolated from 26 species with isolation rate of 38.8%. Of the total number of isolation from ascospores (27 species) and thallus fragments (40 species), 48% and 32.5% of the species were successfully isolated, respectively. Comparison of rDNA sequences of ITS regions between the isolated LFF and the original thallus confirmed that all the isolates originated from the thallus fragments were LEF. The following 14 species of LEF were newly isolated in this study; Acarospora cervina, Bacidia rubella, Cladonia pyxidata, Lasallia pustulata, Lecania hyaline, Lecanora argentata, Parmelina tiliacea, Parmotrema chinense, Physconia distorta, Protoparmeliopsis muralis, Ramalina pollinaria, Sarcogyne regularis, Umbilicaria hirsuta, Xanthoparmelia conspersa and X. stenophylla. Antifungal activity of the Hungarian LFF was evaluated against plant pathogenic fungi of Colletotrichum acutatum, C. coccodes and C. gloeosporioides, causal agent of anthracnose on hot pepper. Among the 26 isolates, 11 LFF showed more than 50% of inhibition rates of mycelial growth of at least one target pathogen. Especially, LFF of Evernia prunastri, Lecania hyalina and Lecanora argentata were remarkably effective in inhibition of mycelial growth of all the tested pathogens with antibiotic mode of action. On the other hands, five isolates of Cladonia furcata, Hypogymnia physodes, Lasallia pustulata, Ramalina fastigiata and Ramalina pollinaria exhibited fungal lytic activity against all the three pathogens. Among the tested fungal pathogens, C. coccodes seemed to be most sensitive to the LFF. The Hungarian LFF firstly isolated in this study can be served as novel bioresources to develop new biofungicides alternative to current fungicides to control hot pepper anthracnose pathogenic fungi.

Electrochemical, Antifungal, Antibacterial and DNA Cleavage Studies of Some Co(II), Ni(II), Cu(II) and Zn(II)-Copolymer Complexes

  • Dhanaraj, C. Justin;Nair, M. Sivasankaran
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • Cyclic voltammetric measurements were performed for Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) (L) and Ni(II) and Cu(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-methacrylic acid) ($L^1$). The in vitro biological screening effects of the investigated compounds were tested against the fungal species including Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans and bacterial species including Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by well diffusion method. A comparative study of inhibition values of the copolymers and their complexes indicates that the complexes exhibit higher antimicrobial activity. Copper ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. The nuclease activity of the above metal complexes were assessed by gel electrophoresis assay and the results show that the copper complexes can cleave pUC18 DNA effectively in presence of hydrogen peroxide compared to other metal complexes. The degradation experiments using Rhodamine B dye indicate that the hydroxyl radical species are involved in the DNA cleavage reactions.

Response of Mulberry Brown Leaf Spot Fungus Myrothecium roridum to Different Plant Extracts

  • Chattopadhyay, S.;Institute, Traning;Majil, M.D.;Pratheesshkumar;Das, K.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • Anti-fungal potential of 5 plant extracts viz., Eucalyptus citriodora, Allium sativum, Cassia sophera, Chromolaena odorata and Datura metel on the growth of mulberry brown leaf spot pathogen Myrothecium roridum were examined. Except fur the aqueous extract of Allium bulb, ethanolic leaf extract of all other plants more efficiently reduced the colony growth of the fungus on potato-dextrose-agar, Of which, Allium and Eucalyptus extracts were more effective. Initiation of radial growth of M. roridum on solid media was deferred maximum 6 days by ethanolic Eucalyptus extract and 4 days by aqueous Allium extract at $0.4 mg.ml^{-1}$. In the liquid media amended with Eucalyptus extract ($0.4 mg.ml^{-1}$) complete inhibition of sporulation was noticed upto 8 days, and initial inhibition of mycelial bio-mass generation was considerably diminished with time and reduction was 1.3 fold 14 days after application. While, complete inhibition of mycelial growth for 6-14 days was recorded with $\geq$0.1 mg.ml$^{-1}$ commercial eucalyptus oil. However, rejuvenation of growth appeared when fungus was re-inoculated in fresh media. Post-inoculate application of different doses Of Eucalyptus and Allium extracts significantly (p < 0.05) reduced the disease severity in pot-ted mulberry. However, persistence of the effect up to 28 days was apparent at $\geq$ 1.0 mg.ml$^{-1}$ and effectively was on par with carbendazim (1 mg.ml$^{-1}$ ). Almost equal control ability of 1.0 mg.ml$^{-1}$ Eucalyptus extracts can be achieved by ca. 10 times lowered dose of commercial eucalyptus oil. It seems, the toxic principle of E. citrodora to M. roridum is fungistatic in nature and may have essential oil based origin.

Molecular Cloning and Expression of Genes Related to Antifungal Activities from Enterobacter sp. B54 Antagonistic to Phytophthora capsici

  • YOON, SANG-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.352-357
    • /
    • 1999
  • Enterobacter sp. B54 inhibited growth of the fungus Phytophthora capsici on potato dextrose agar (PDA). Three mutants with antifungal activities (denoted M54-47, M54-113, and M54-329) which were lost or increased, through Pl::Tn5 lac mutagenesis, were used to isolate genes responsible for fungal inhibition on PDA. Two clones were selected from the partially EcoR1-digested genomic library of the wild-type strain by probing with genomic flanking sequences of each mutant. We have isolated a 20-kb EcoR1 genomic DNA fragment from this strain that contains genes involved in hyphal growth inhibition of P. capsici on PDA. Subcloning and expression analysis of the above DNA fragment identified a 8-kb region which was necessary for antifungal activities. A 8-kb HindⅢDNA fragment covers three genomic loci inserted by Tn5 lac in each mutant. This suggested that all genes which are related to antifungal activities might be clustered in simple forms of at least 5-8 kb sizes.

  • PDF

Penicillium sp.-L4의 균성장 및 효소작용을 억제하는 $\beta$-glucosidase inhibitor의 분리 및 특성

  • Kim, Moo-Sung;Ha, Sung-Yoon;Jeon, Gi-Boong;Lim, Dal-Taek;Park, Byung-Hwa;Lee, Bo-Seop;Lee, Sang-Rin;Choi, Yong-Keel
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 1997
  • A producer of inhibitor against ${\beta}-glucosidase$ of Penicillium sp.-L4 was screened from Actinomycetes, and the isolated strain was identified as Streptomyces sp. The inhibitor produced was very stable against heat, acidic and alkaline conditions, proteolytic and amylolytic enzymes. The inhibotor was purified from culture broth through activated carbon treatment, ultrafiltration, anion and cation exchange, activated carbon columm, acetone precipitation and preparative HPLC. It showed inhibitory activities against a variety of dissacharide hydrolyzing enzymes produced by P.sp.-L4, and the mode of inhibition was competitive. Its structure and molecular formular was elucidated by IR, $^1H\;and\;^{13}C$ NMR and FAB/Mass spectrometry, which was identified as 1-deoxynojirimycin (dNM). dNM showed inhibitory effects on the cell growth and hydrolytic enzyme action of P.sp.-L4 on agar plate and infected lemon peel.

  • PDF

Antiulcerogenic and Anticancer Activities of Korean Red Ginseng Extracts Bio-transformed by Paecilomyces tenuipes

  • Kim, Young-Man;Choi, Won-Sik;Kim, Hye Jin;Lee, Eun-Woo;Park, Byeoung-Soo;Lee, Hoi-Seon;Yum, Jong Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • In the present study, red ginseng extracts were fermented by Paecilomyces tenuipes and the protopanaxdiol-type ginsenosides in the extracts were bio-transformed to F2, Rg3, Rg5, Rk1, Rh2, and CK determined by a high-pressure liquid chromatography analysis. It indicates that P. tenuipes is a microorganism to biotransform protopanaxdiol-type ginsenosides to their less glucosidic metabolites. Other biotransformed metabolites during fermentation were also analyzed using a GC-MS and identified as 2-methyl-benzaldehyde, 4-vinyl-2-methylphenol, palmitic acid, and linoleic acid. Antiulcerogenic activity of the fermented red ginseng extract (FRGE) on gastric mucosal damage induced by 0.15 M HCl in ethanol in rats was evaluated. FRGE was shown to have a potent protective effect on gastritis with 60.5% of inhibition rate at the dose of 40 mg/kg when compared to 54.5% of the inhibition rate at the same dose for stillen, the currently used medicine for treating gastritis. Linoleic acid showed a strong inhibition on gastritis with 79.3% of inhibition rate at the dose of 40.0 mg/kg. FRGE exhibited a distinct anticancer activity including growth inhibition of the two human colon cancer cells HT29 and HCT116. HT29 cells were less susceptible to FRGE in comparison with HCT116 cells. Taken together, fungal fermentation of the red ginseng extract induced hydrolysis of some ginsenosides and FRGE exhibited potent antiulcerogenic and anticancer activities. These results refer to use FRGE as a new source for treating human diseases.

In vitro Antifungal Activity of 4-Hydroxyderricin and Acetylshikonin against Ascosphaera apis

  • Park, Sangchul;Shin, Yu-Kyong;Cho, MyoungLae;Kwon, Hyun Sook;Kwon, Yun Ju;Kim, Ki-Young
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.125-129
    • /
    • 2019
  • Honey bees are important pollinators in agriculture, but are threatened by the pathogen Ascosphaera apis, which causes chalkbrood. Despite attempts to control this fungus using synthetic fungicides, none of them have been proven to be completely effective. Among 640 natural compounds that we tested, 4-hydroxyderricin (MIC=3.125, 6.25 mg/L after 24 h and 48 h growth, respectively) exhibited the strongest anti- Ascosphaera apis activity, followed by acetylshikonin (MIC=12.5 mg/L for 24 h and 48 h growth). 4-Hydroxyderricin showed selective growth inhibition of Ascosphaera apis and Rhizopus oryzae among tested fungus strains. Treatment 4-hydroxyderricin with miconazole revealed a synergistic effect (FICI=0.65±0.13 at 48 h incubation). These findings suggest that 4-hydroxyderricin, which has antifungal activity against Ascosphaera apis but few other fungal species, can effectively control infectious fungal diseases. Combined treatment of bees with 4-hydroxyderricin and miconazole could reduce cytotoxicity and improve the cost effectiveness of treatment.