DOI QR코드

DOI QR Code

Isolation of Lichen-forming Fungi from Hungarian Lichens and Their Antifungal Activity Against Fungal Pathogens of Hot Pepper Anthracnose

  • Jeon, Hae-Sook (Korean Lichen Research Institute, Sunchon National University) ;
  • Lokos, Laszlo (Botanical Department of the Hungarian Natural History Museum) ;
  • Han, Keon-Seon (Korean Lichen Research Institute, Sunchon National University) ;
  • Ryu, Jung-Ae (Korean Lichen Research Institute, Sunchon National University) ;
  • Kim, Jung-A (Korean Lichen Research Institute, Sunchon National University) ;
  • Koh, Young-Jin (Korean Lichen Research Institute, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
  • Published : 2009.03.31

Abstract

Lichen-forming fungi (LEF) were isolated from 67 Hungarian lichen species from ascospores or thallus fragments. LFF were successfully isolated from 26 species with isolation rate of 38.8%. Of the total number of isolation from ascospores (27 species) and thallus fragments (40 species), 48% and 32.5% of the species were successfully isolated, respectively. Comparison of rDNA sequences of ITS regions between the isolated LFF and the original thallus confirmed that all the isolates originated from the thallus fragments were LEF. The following 14 species of LEF were newly isolated in this study; Acarospora cervina, Bacidia rubella, Cladonia pyxidata, Lasallia pustulata, Lecania hyaline, Lecanora argentata, Parmelina tiliacea, Parmotrema chinense, Physconia distorta, Protoparmeliopsis muralis, Ramalina pollinaria, Sarcogyne regularis, Umbilicaria hirsuta, Xanthoparmelia conspersa and X. stenophylla. Antifungal activity of the Hungarian LFF was evaluated against plant pathogenic fungi of Colletotrichum acutatum, C. coccodes and C. gloeosporioides, causal agent of anthracnose on hot pepper. Among the 26 isolates, 11 LFF showed more than 50% of inhibition rates of mycelial growth of at least one target pathogen. Especially, LFF of Evernia prunastri, Lecania hyalina and Lecanora argentata were remarkably effective in inhibition of mycelial growth of all the tested pathogens with antibiotic mode of action. On the other hands, five isolates of Cladonia furcata, Hypogymnia physodes, Lasallia pustulata, Ramalina fastigiata and Ramalina pollinaria exhibited fungal lytic activity against all the three pathogens. Among the tested fungal pathogens, C. coccodes seemed to be most sensitive to the LFF. The Hungarian LFF firstly isolated in this study can be served as novel bioresources to develop new biofungicides alternative to current fungicides to control hot pepper anthracnose pathogenic fungi.

Keywords

References

  1. Ahmadjian, V. 1993. The lichen symbiosis. 2nd ed. John Wiely & Sons, Inc., New York, USA
  2. Arup, U. 2002. PCR techniques and automated sequencing in lichens. In: Protocols in lichenology: culluring. biochemistry, ecophysilolgy and use in biomollitoring, ed. by I. Kranner, R. P. Beckett and A. K. Vanna, pp. 392-411. Springer-Verlag, New York
  3. Beckett, R. P and Minibayeva, F. V. 2007. Cell wall redox enzymes in lichens: A role in desiccation tolerance. South African J. Bot. 73:482
  4. Behera. B. C. Verma, N., Sonone, A and Makhija, U. 2005. Evaluation of antioxidant potential of the cultured rnycobiont of a lichen Usnea ghattensis. Phytother. Res. 19:58-64 https://doi.org/10.1002/ptr.1607
  5. Behera, B. C, Verma, N., Sonone, A and M akhij a, U. 2006a. Experimental studies on the growth and usnic acid production in 'lichen' Usnea ghattensis in vitro. Microbiol. Res. 161:232-237 https://doi.org/10.1016/j.micres.2005.08.006
  6. Behera, B. C, Adawadkar, B. and Makhija, U. 2006b. Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77:208-215 https://doi.org/10.1016/j.fitote.2006.02.002
  7. Crittcnden, P. D. and Porter, N. 1991. Lichen-forming fungi: potential sources of novel metabolites. Trend Biotechnol. 9:409-414 https://doi.org/10.1016/0167-7799(91)90141-4
  8. Crittenden, P. D., Davis, J. C, Hawksworth, D. L. and Campbell, F. S. 1995. Attempted isolation and SUCcess in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytologist 130:267-267 https://doi.org/10.1111/j.1469-8137.1995.tb03048.x
  9. Culberson, C. F. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatography 72: 113-125 https://doi.org/10.1016/0021-9673(72)80013-X
  10. De los Rios, A., Ramirez, R. and Estevez, P. 1997. Production of several isoforms of $\beta$-1 ,4-glucanase by the cyanolichen Peltigera caninu. Physiol. Plant. 100: 159-164 https://doi.org/10.1111/j.1399-3054.1997.tb03467.x
  11. Ekman, S. 1999. PCR optimization qand troubleshooting, with special refemce to the amplification of ribosomal DNA in lichenized fungi. Lichenologist 31:517-531 https://doi.org/10.1017/S0024282999000675
  12. Gulluce, M., AsIan, A, Sokmen, M., Adiguzel, A, Agar, G and Sokmen, A. 2006. Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Plastismatia glauca, Ramatina pollinaria. Ramatina po(vmorpha and Umbilicaria nylanderiana. Phytomedicine 13:515-521 https://doi.org/10.1016/j.phymed.2005.09.008
  13. Halama, P. and Van Halywin, C. 2004. Antifungal activity of lichen extracts and lichenic acids. BioControl. 49:95-107 https://doi.org/10.1023/B:BICO.0000009378.31023.ba
  14. IndexFungorwn: http://www.indexfungorum.org
  15. Ingolfsdottir, K. 2002. Molecules of interest: usnic acid. Phytochemisny 64:729-736 https://doi.org/10.1016/S0031-9422(02)00383-7
  16. Kang, B. K., Min J. Y, Kim Y S., Park, S. W, Bach, N. V. and Kim, H. T.2005. Semi-selective medium for monitoring Colletorichum acuta/um causing pepper anthracnose in the field. Res. Plant Dis. 11 :21-27. (in Korean) https://doi.org/10.5423/RPD.2005.11.1.021
  17. Kirk, P. M., Cannon, P. F., David J. C. and Stalpers, J. A 2001. Dictionary offungi. 9th ed. CABl Bioscience, Egham, UK
  18. Laufer, Z., Beckett, R. P., Minibayeva, F. V., Lilthje, S. and Bottger, M. 2006. Occurrence of laccases in lichenized ascomycetes of the Peltigcrineae. Mycol. Res. 110:846-853 https://doi.org/10.1016/j.mycres.2006.03.011
  19. Milller, K. 2001. Phamaceutically relevant metabolites from lichens. Appl. Microbiol Biotrchnol. 56:9-16 https://doi.org/10.1007/s002530100684
  20. Perry, N. B., Benn, M. H., Brennan, N. J., Burgess, E. J., Ellis, G, Galloway, D. J., Lorimer, S. D. and Tangney, R. S. 1999. Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31 :627-636 https://doi.org/10.1017/S002428299900081X
  21. Petrini, O., Hake, U. and Dryfuss, M. M. 1990. An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444-451 https://doi.org/10.2307/3760015
  22. Shin, H. J., Chen, Z. J., Hwang, J. M, and Lee, S. G 1999. Comparison of pepper anthracnose pathogen from Korea and China. Plam Pathol. J. 15:323-329
  23. White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to methods and applications, ed. by M. A Inni', D. H. Gelfand, J. J. Sninsky, and T. J. White, pp. 315-322. Academic Press, New York
  24. Wei, X., Jean. H.-S., Han, K. S., Koh, Y. J. and Hur, J-S. 2008. Antifungal activity of lichen-forming fungi against Colletotri-chum acutatum on hot pepper. Plant Pathol. J. 24:202-206 https://doi.org/10.5423/PPJ.2008.24.2.202
  25. Yamamoto, Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenology 1: 11-22
  26. Yamamoto, Y, Mizuguchi, R. and Yamada, Y 1985. Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric. BioI. Chem. 49: 3347-3348 https://doi.org/10.1271/bbb1961.49.3347
  27. Yamamoto, Y, Kinoshita, Y., Matsubara, H.. Kinoshita, K., Koyama, K., Takahashi, K., Kurokawa, T. and Yoshimura, I. 1998. Screening of biological activities and isolation of biological active compounds from lichens. Recent Res. in Phytochem. 2:23-34
  28. Yamamoto, Y., Kinoshita, Y. and Yoshimura, I. 2002. Culture of thallus fragments and redifferentiation of lichens. In: Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, ed. by I. Kranner, R. P. Beckett and A. K. Varma, pp. 34-46. Springer-Verlag, New York
  29. Yoshimura, I., Yamamoto, Y., Nakano, T. and Finnie, J. 2002. Isolation and culture of lichen photobionts and mycobionts. In: Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, ed. by I. Kranner, R. P. Beckett and A. K. Varma, pp. 3-33. Springer-Verlag, New York

Cited by

  1. Kashiwadiagen. nov. (Physciaceae, lichen-forming Ascomycota), proved by phylogenetic analysis of the Eastern Asian Physciaceae vol.56, pp.3-4, 2014, https://doi.org/10.1556/ABot.56.2014.3-4.12
  2. Antibacterial and Antifungal Activities of Gelatinose and non-Gelatinose Lichen Species vol.3, pp.4, 2015, https://doi.org/10.5812/jamm.31610
  3. Biopharmaceutical potential of lichens vol.50, pp.6, 2012, https://doi.org/10.3109/13880209.2011.633089
  4. Antifungal Properties of Rhizopus oligosporus Against Apple Anthracnose Fungi vol.29, pp.1, 2010, https://doi.org/10.5338/KJEA.2010.29.1.086
  5. Success in the isolation and axenic culture of Anaptychia ciliaris (Physciaceae, Lecanoromycetes) mycobiont vol.56, pp.4, 2015, https://doi.org/10.1016/j.myc.2014.10.003