• Title/Summary/Keyword: Inhibition Factor

Search Result 1,602, Processing Time 0.039 seconds

Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 억제를 통한 rebaudioside A의 항염 효과)

  • Choi, Da Hee;Cho, Uk Min;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.205-211
    • /
    • 2018
  • Rebaudioside A is a natural sweetener isolated from Stevia rebaudiana Bertoni, one of the glycosides based on steviol. Recent studies have shown that rebaudioside A inhibits the inflammatory response by inhibiting cytokines secretion such as interleukin-$1{\alpha}/1{\beta}$ in activated RAW264.7 mouse macrophage cells by LPS. However, the inhibitory mechanism of inflammation by rebaudioside A in the presence of LPS has not been fully elucidated. Therefore, in this study, we tried to investigate the anti-inflammatory activity of rebaudioside A at the protein level when RAW264.7 cells were stimulated by LPS. The inducible nitric oxide synthase protein expression level was reduced in the group treated with $250{\mu}M$ rebaudioside A compared to the LPS-treated group. In addition, the mRNA expression level of $NF-{\kappa}B$, which is a representative nuclear transcription factor by inflammatory signal, was also decreased as compared with that of LPS-treated group. In addition, $NF-{\kappa}B$ and inhibitor-${\kappa}B$ ($I-{\kappa}B$) complexes that are known to be dissociated by $I-{\kappa}B$ phosphorylation and ubiquitination were less phosphorylated than LPS treated group in the presence rebaudioside A. Finally, we could find that rebaudioside A was involved in the $NF-{\kappa}B$ pathway through reducing extracellular signal-regulated kinase1/2 phosphorylation in a concentration-dependent manner. These results suggest that rebaudioside A might suppress inflammatory reaction through MAPK and $NF-{\kappa}B$ regulation in LPS-stimulated RAW264.7.

Studies on the Fracture Healing in the Alloxan treated Rabbits (Alloxan 투여 가토(家兎)에 대한 골절치유 실험)

  • Kim, Sung-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.53-65
    • /
    • 1971
  • It is well known that diabetes mellitus is associated with metabolic derangements, such as hyper-glycemia, ketosis, glycosuria, and also widespread alterations in the blood vessels, kidneys, eyes, peripheral nerves and heart. It is also recognized that healing of skin wound is delayed in diabetics. In bone, according to Aegerter, osteopenia develops in diabetes mellitus and it is chiefly ascribed to overutilization of protein. Shim claims that total blood flow to the entire skeletal system is approximately 4 to 8 percent of resting cardiac output and blood supply to the skeletal system would be decreased on account of secondary arteriosclerotic changes in the diabetics. An adequate blood supply is an essential factor in the healing process of fracture, and disturbed blood flow, either local or systemic, will invariably delay union of the fragments or the fragments from being fused. As the author has encountered several cases of diabetics in whom healing of fracture was delayed or incomplete, this experimental study was undertaken to elucidate the effects of hyperglycemia and diabetes mellitus on the healing process of fracture. In this experiment adult albino rabbits, weighing about 2 kg. were used and divided into 6 groups. The femur of each animal was fractured surgically, and then the healing process of fracture was periodically checked by radiography at an interval of one week for a period of 6 weeks. Thereafter, all the rabbits were killed to obtain tissue preparation of the femur. The experimental groups were as follows; 1) Control group: Six rabbits sustained a surgical fracture to the femur, without being given any other treatment or drug. 2) Alloxan-treated group: For inducing diabetes, alloxan was given intravenously to 17 rabbits in various dose as follows; to 7 of them 40 mg/kg, to 6 rabbits 80 mg/kg and to 4 rabbits 120 mg/kg of body weight, respectively. 3) Insulin-treated group: Protamine-zinc insulin was injected subcutaneously to each of 6 rabbits in a daily dose of 1 unit per kilogram of body weight. 4) Group treated with insulin after alloxan: Four rabbits were given 80 mg of alloxan once and than 1 unit of insulin per kilogram of body weight daily. Another 5 rabbits were injected 1 unit of insulin per kg of body weight daily following administration of alloxan in a dose of 120 mg/kg. 5) Homotransplantation group: Following intravenous injection of alloxan in a dose of 120 mg/kg, 10 rabbits underwent homotransplantation of a short bone segment to the femur. Five of them were subsequently given 1 unit/kg of insulin daily. 6) Sugar-treated group: six rabbits were fed $15{\sim}20$ gm of sugar daily throughout the period of experiment. The results obtained are summarized as follows; 1. Blood sugar level and damage to the pancreatic islet increased proportionately when alloxan was given to the rabbits in various doses. No appreciable change could be observed in the islets when the blood sugar level was altered by either oral administration of sugar or subcutaneous injection of insulin. 2. Comparing with the control group, healing of fracture was delayed in the alloxan-treated group, while callus formation and periosteal reaction were shown to be more prominent in this group and subsequently, the ultimate osseous tissue formed at the fracture site was significantly smaller in amount and less compact. These findings were more marked as the amount of alloxan increased. 3. Administration of insulin prevented the delay in healing process of fracture in the rabbits with alloxan-induced hyperglycemia. In this case, the course and progression of fracture healing were almost similar to those of control group. 4. Union between the host bone and the fragment transplanted from other rabbit of the same species was more delayed in the group treated with alloxan alone than in the group to which insulin was administered after development of alloxan-induced diabetes. In both groups periosteal new bone developed from the ends of the host bone, above and below the transplanted fragment, and directly fused with failure of periosteal callus to bridge the adjacent ends of the host bone and the transplanted fragment. 5. The healing process of fracture was not inhibited by alteration in blood sugar level when the blood sugar was abnormally increased by excessive sugar intake or lowered by administration of insulin alone. The healing of fracture in these groups progressed similarly as in the control group. In brief summary, it appears that the healing process of fracture would be definitely disturbed in diabetic state brought about by damage to the pancreatic islet. As such an inhibition could be overcome with insulin, it seems that insulin plays an important role in healing of fracture, but alteration in blood sugar level alone does not modify healing process of fracture to significant degree.

  • PDF

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

GATA-3 is a Key Factor for Th1/Th2 Balance Regulation by Myristicin in a Murine Model of Asthma (Myristicin이 Ovalbumin으로 유도한 천식 생쥐모델에서 Th1/Th2 Balance를 조절하는 GATA-3에 미치는 효과)

  • Lee, Kyu;Lee, Chang-Min;Jung, In-Duk;Jeong, Young-Il;Chun, Sung-Hak;Park, Hee-Ju;Choi, Il-Whan;Ahn, Soon-Cheol;Shin, Yong-Kyoo;Lee, Sang-Yull;Yeom, Seok-Ran;Kim, Jong-Suk;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1090-1099
    • /
    • 2007
  • Myristicin, l-allyl-3,4-methylenedioxy-5-methoxybenzene, was one of the major essential oils of nutmeg. However, its anti-allergic effect in the Th1/Th2 immune response was poorly understood. Recently, it was shown that T-bet and GATA-3 was master Th1 and Th2 regulatory transcription factors. In this study, we have attempted to determine whether myristicin regulates Th1/Th2 cytokine production, T-bet and GATA-3 gene expression in ovalbumin (OVA)-induced asthma model mice. Myristicin reduced levels of IL-4, Th2 cytokine production in OVA-sensitized and challenged mice. In the other side, it increased $IFN-{\gamma}$, Th1 cytokine production in myristicin administrated mice. We also examined to ascertain whether myristicin could influence eosinophil peroxidase (EPO) activity. After being sensitized and challenged with ovalbumin (OVA) showed typical asthmatic reactions. These reactions included an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration into the lung tissue around blood vessels and airways, and the development of airway hyper-responsiveness (AHR). The administration of myristicin before the last airway OVA challenge resulted in a significant inhibition of all asthmatic reactions. Accordingly, these findings provide new insight into the immunopharmacological role of myristicin in terms of its effects in a murine model of asthma.

Overexpression of TMP21 Could Induce not only Downregulation of TrkA/ERK Phosphorylation but also Upregulation of p75NTR/RhoA Expression on NGF Receptor Signaling Pathway (γ-Secretase 활성억제단백질인 TMP21의 과발현이 신경세포주에서 NGF 수용체 신호전달과정에 미치는 영향)

  • Choi, Sun-Il;Jee, Seung-Wan;Her, Youn-Kyung;Kim, Ji-Eun;Nam, So-Hee;Hwang, In-Sik;Lee, Hye-Ryun;Goo, Jun-Seo;Lee, Young-Ju;Lee, Eon-Pil;Choi, Hae-Wook;Kim, Hong-Sung;Lee, Jae-Ho;Jung, Young-Jin;Lee, Su-Hae;Shim, Sun-Bo;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1134-1141
    • /
    • 2011
  • Transmembrane protein 21 (TMP21) is a member of the p24 cargo protein family and has been shown to modulate ${\alpha}$-secretase-mediated A${\beta}$ production which was specifically observed in the brains of subjects with Alzheimer's disease (AD). In order to investigate whether TMP21 could affect nerve growth factor (NGF) receptor signaling pathway, the alteration of NGF receptors and their downstream proteins were detected in TMP21 over-expressed cells. CMV/hTMP21 vector used in this study was successfully expressed into TMP21 proteins in B35 cells after lipofectamin transfection. Expressed TMP21 proteins induced the down-regulation of ${\gamma}$-secretase complex components including Presenlin-1 (PS-1), PS-2, Nicastrin (NST), Pen-2 and APH-1. Also, the expression level of NGF receptor $p75^{NTR}$ and RhoA were significantly higher in CMV/hTMP21 transfectants than vehicle transfectants, while their levels returned to vehicle levels after NGF treatment. However, the phosphorylation of NGF receptor TrkA was dramtically decreased in NGF No-treated CMV/hTMP21 transfectants compared with vehicle transfectants, and increased in NGF treated CMV/hTMP21 transfectants. In TrkA downstream signaling pathway, the phosphorylation level of ERK was also decreased in CMV/hTMP21 transfectants, while the phosphorylation of Akt was increased in the same transfectants. Furthermore, NGF treatment induced the increase of phosphorylation level of Akt and ERK in CMV/hTMP21 transfectants. Therefore, these results suggested that over-expression of TMP21may simultaneously induce the up-regulation of $p75^{NTR}$/RhoA expression and the down-regulation of TrkA/ERK phosphorylation through the inhibition of ${\gamma}$-secretase activity.

Expression of CsRCI2s by NaCl stress reduces water and sodium ion permeation through CsPIP2;1 in Camelina sativa L.

  • Kim, Hyun-Sung;Lim, Hyun-Gyu;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.194-194
    • /
    • 2017
  • Camelina (Camelina sativa L.) is a potential bio-energy crop that has short life cycle about 90 days and contains high amount of unsaturated fatty acid which is adequate to bio-diesel production. Enhancing environmental stress tolerance is a main issue to increase not only crop productivity but also big mass production. CsRCI2s (Rare Cold Inducible 2) are cold and salt stress related protein that localized at plasma membrane (PM) and assume to be membrane potential regulation factor. These proteins can be divide into C-terminal tail (CsRCI2D/E/F/G) or no-tail group (CsRCI2A/B/C/H). However, function of CsRCI2s are less understood. In this study, physiological responses and functional characterization of CsRCI2s of Camelina under salt stress were analyzed. Full-length CsRCI2s (A/B/E/F) and CsPIP2;1 sequences were confirmed from Camelina genome browser. Physiological investigations were carried out using one- or four-week-old Camelina under NaCl stress with dose and time dependent manner. Transcriptional changes of CsRCI2A/B/E/F and CsPIP2;1 were determined using qRT-PCR in one-week-old Camelina seedlings treated with NaCl. Translational changes of CsRCI2E and CsPIP2;1 were confirmed with western-blot using the antibodies. Water transport activity and membrane potential measurement were observed by cRNA injected Xenopus laevis oocyte. As results, root growth rate and physiological parameters such as stomatal conductance, chlorophyll fluorescence, and electrolyte leakage showed significant inhibition in 100 and 150 mM NaCl. Transcriptional level of CsPIP2;1 did not changed but CsRCI2s were significantly increased by NaCl concentration, however, no-tail type CsRCI2A and CsRCI2B increased earlier than tail type CsRCI2E and CsRCI2F. Translational changes of CsPIP2;1 was constitutively maintained under NaCl stress. But, accumulation of CsRCI2E significantly increased by NaCl stress. CsPIP2;1 and CsRCI2A/B/E/F co-expressed Xenopus laevis oocyte showed decreased water transport activity as 61.84, 60.30, 62.91 and 76.51 % at CsRCI2A, CsRCI2B, CsRCI2E and CsRCI2F co-expression when compare with single expression of CsPIP2;1, respectively. Moreover, oocyte membrane potential was significantly hyperpolarized by co-expression of CsRCI2s. However, higher hyperpolarized level was observed in tail-type CsRCI2E and CsRCI2F than others, especially, CsRCI2E showed highest level. It means transport of $Na^+$ ion into cell is negatively regulated by expression of CsRCI2s, and, function of C-terminal tail is might be related with $Na^+$ ion influx. In conclusion, accumulation of NaCl-induced CsRCI2 proteins are related with $Na^+$ ion exclusion and prevent water loss by CsPIP2;1 under NaCl stress.

  • PDF

Effect of lonizing Radiation on the Host Resistance Against Listeria Monocytogenes Infection and the Cytokine Production in Mice (방사선조사후 마우스에서의 Cytokine 생산능 및 Listeria monecytogenes에 대한 저항성의 변화)

  • Oh, Yoon-Kyeong;Chang, Mee-Young;Kang, In-Chol;Oh, Jong-Suk;Lee, Hyun-Chul
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 1997
  • Purpose : To evaluate the qualitative immunologic changes by ionizing radiation. we studied the altered capacities of the macrophages and lymphocytes to produce cytokines in conjunction with resistance to Listeria monocytegenes (LM) infection in mice Materials and Methods : BALB/c mice and Listeria monocytogenes were used. The mice were infected intraperitoneally with $10^5LM$ at 1 day after irradiation (300cGy) and sacrificed at 1, 3, 5 days after infection, and then the numbers of viable LM per spleen in the irradiated and control group were counted. Tumor necrosis factor-alpha ($TNF-\alpha$), interferon-gamma ($IFN-\gamma$). interleukin-2 (IL-2), and nitric oxide (NO) were assessed after irradiation. Results : Under gamma-ray irradiation with a dose range of 100-850cGy, the number of total splenocytes decreased markedly in a dose-dependent manner, while peritoneal macrophages did so slightly Cultured peritoneal macrophages produced more $TNF-\alpha$ in the presence of lipopolysaccharide (LPS) during the 24 hours after in vitro irradiation, but their capacity of $TNF-\alpha$ Production showed a decreased tendency at 5 days after in vivo total body irradiation. With 100cGy and 300cGy irradiation, cultured peritoneal macrophages produced more NO in the presence of LPS during the 24 hours after in vitro irradiation than without irradiation. Activated splenocytes from irradiated mice (300cGy) exhibited a decreased capacity to Produce IL-2 and $IFN-\gamma$ with Concavalin-A stimulation at 3 days after irradiation. When BALB/c mice were irradiated to the total body with a dose of 300cGy, they showed enhanced resistance during early innate phase, but a significant inhibition of resistance to LM was found in the late innate and acquired T-cell dependent phases. Conclusion : These results su99es1 that increased early innate and decreased late innate and acquired immunity to LM infection by ionizing radiation (300cGy) may be related to the biphasic altered capacity of the macrophages to produce $TNF-\alpha$ and the decreased capacities of the lymphocytes to produce IL-2 and $IFN-\gamma$ in addition to a marked decrease in the total number of cells.

  • PDF

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF

Algicidal Characteristics of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquids to Several Fresh-water Algae (이온성 액체 1-alkyl-3-methylimidazolium chloride계 화합물의 담수조류에 대한 살조활성 특징)

  • Hwang, Hyun-Jin;Kim, Jae-Deog;Choi, Jung-Sup;Kim, Young-Wun;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.233-242
    • /
    • 2010
  • This study was conducted to know that if ionic liquids can be applicable as control agents of harmful algae in water-ecosystem and to find out problems caused by ionic liquid application. Firstly, the differential selectivity of various fresh-water algal species to several 1-alkyl-3-methylimidazolium chloride ionic liquids was investigated. There was a distinct differential response between alkyl chain lengths from butyl to dodecyl and towards the algal organisms : Generally algicidal activity was increased with increase of chain length and among the algae used in this study, Stephanodiscus hantzschii f. tenuis, Oscillatoria tenuis and Spirulina pratensis were most sensitive to 1-dodecyl-3-methylimidazolium chloride (MAIC12), next was Microcystis aeruginosa, and the others were relatively less sensitive to the chemical. The selectivity degree was about ten to twenty times based on the $EC_{80}$ (Effective concentration required for 80% growth inhibition). Secondly, an activity persistence of ionic liquids was investigated in natural mimic condition (using water bottle containing soil-sediments under the greenhouse condition). At the application of $1.0{\mu}g\;mL^{-1}$ of 1-octyl-3-methylimidazolium chloride (MAIC8), the algal growth did not occur at all until 6 days after treatment(DAT) and observed a only little growth at 9 DAT. But the algae grew rapidly after 9 DAT. So at 20 DAT, total chlorophylls was $264.4{\mu}g\;L^{-1}$ and the growth was inhibited by 58.2% compared to untreatment. On the other hand, MAIC12 also had a similar persistence pattern to MAIC8, showing nearly 5 times more activity than MAIC8. At 20 days after $0.2{\mu}g\;mL^{-1}$ application of MAIC12, that is, total chlorophylls was $251.2{\mu}g\;L^{-1}$ and the growth was inhibited by 55.2% compared to untreatment. In summary, 1-alkyl-3-methylimidazolium chloride ionic liquids is likely to be applicable for selective control of harmful algae as potent compounds having long lasting activity. However, the difficulty of degradation seems to be a limiting factor in an eco-friendly application of the compounds.