• Title/Summary/Keyword: Inhibition Factor

Search Result 1,602, Processing Time 0.024 seconds

Anti-inflammatory Properties of Meso-dihydroguaiaretic Acid in Lipopolysaccharide-induced Macrophage

  • Kim, Yong-Jae;Kang, Yeo-Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.91-95
    • /
    • 2010
  • Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae). It exhibits a neuroprotective effect and also exerts cytotoxicity to certain cancer cells. In the present study, we investigated whether or not MDGA inhibits inflammatory reaction through the inhibition of nitric oxide (NO) generation. The results showed that MDGA (5~$25 {\mu}M$) inhibited 100 ng/ml lipopolysaccharide (LPS)- induced NO generation in macrophage Raw 264.7 cells in a concentration-dependent manner. We also measured the cytotoxic effects of MDGA on Raw 264.7 cells and found no evidence of cytotoxicity. The inhibition of NO generation by MDGA was consistent with the inhibitory effect on the expression of inducible nitric oxide synthase (iNOS). In addition, MDGA inhibited the LPS-induced gene expression of $interleukin-1{\beta}$ $(IL-1{\beta})$ as well as tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$. The present results may provide that MDGA has anti-inflammatory properties through inhibition of the toll-like receptors (TLRs) pathway, and suggest that MDGA can be used as an anti-inflammatory agent.

Antioxidant and Anti-Inflammatory Effects of NCW Peptide from Clam Worm (Marphysa sanguinea)

  • Park, Young Ran;Park, Chan-Il;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1387-1394
    • /
    • 2020
  • Clam worms (Marphysa sanguinea) are a rich source of bioactive components such as the antibacterial peptide, perinerin. In the present study, we explored the physiological activities of a novel NCWPFQGVPLGFQAPP peptide (NCW peptide), which was purified from clam worm extract through high-performance liquid chromatography. Tandem mass spectrometry (MS/MS) revealed that NCW was a new peptide with a molecular weight of 1757.86 kDa. Moreover, NCW peptide exhibited significant antioxidant effects, causing a 50% inhibition of DPPH radical at a concentration of 20 μM without showing any cytotoxicity. These were associated with a reduction in the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in LPS-stimulated RAW264. 7 cells. Furthermore, NCW peptide exhibited anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via inhibition of the abnormal production of pro-inflammatory cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). These anti-inflammatory effects of NCW peptide were associated with the inhibition of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Our results therefore suggest that this novel NCW peptide with antioxidant and anti-inflammatory effects could be a good therapeutic agent against inflammation-related diseases.

Inhibitory Effects of Paeonia suffruticosa Andrews Extracts on VEGF Binding to VEGF Receptor

  • Lee, Hak-Kyo;Lee, Sung-Jin
    • Natural Product Sciences
    • /
    • v.13 no.2
    • /
    • pp.128-131
    • /
    • 2007
  • Tumor angiogenesis is a critical step f3r the growth and metastasis of solid tumors. Vascular endothelial growth factor (VEGF) is the most important angiogenic molecule associated with tumor-induced neovascularization. VEGF exerts its activity through binding to its receptor tyrosine kinase, KDR/Flk-1, expressed on the surface of endothelial cells. This study was carried out to investigate inhibitory effect of extracts from root cortex of Paeonia suffruticosa Andrews on VEGF binding to VEGF receptor. The MeOH extract from P. suffrutiocosa Andr. inhibited the binding of KDR/Flk-1-Fc to immobilized VEGF$_{165}$ more than 45% at the concentration of 100 ${\mu}$g/mL. The MeOH extract was further fractionated into n-hexane, ethyl acetate, n-BuOH, and aqueous fractions. Among the four fractions, the ethyl acetate fraction from the root cortex of P. suffruticosa Andr. exhibited highly effective inhibition (${\approx}$ 79% inhibition) and then n-BuOH fraction (${\approx}$ 45% inhibition) on the binding of KDR/Flk-1-Fc to immobilized VEGF$_{165}$ at the concentration of 100 ${\mu}$g/mL. The ethyl acetate fraction from the root cortex of P. suffruticosa Andr. more efficiently blocked VEGF-induced human umbilical vein endothelial cell proliferation, than the growth of HT1080 human fibrosarcoma. Our results suggest that P. suffruticosa Andr. may be used as a candidate fur developing anti-angiogenic agent.

Beneficial Effects of Marine Bioactive Substances on Bone Health, via Osteoarthritis Inhibition and Osteoblast Differentiation

  • Nguyen, Minh Hong Thi;Qian, Zhong-Ji;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Bone health is maintained by balance between bone resorption and bone formation, and bone homeostasis requires balanced interactions between osteoblasts and osteoclasts. Most of drugs and functional foods for bone health have been developed as bone resorption inhibitors, which maintain bone mass by inhibiting the function of osteoclasts. The recent studies have shown beneficial effects of marine natural products on bone health. Therefore, this review is aimed to study effects of marine-derived natural substances on osteoarthritis inhibition via attenuation of MMPs and osteoblastic differentiation via activation of alkaline phosphatase (ALP), osteoclacin (OC), bone morphogenic protein-2 (BMP-2) as an important factor for bone formation, and mineralization. The present review can provide new insights in the osteoblastic differentiation of marine natural products and possibility for their application in bone health supplement.

Anti-tumor and Anti-inflammatory Activity of the Methanol Extracts from Adlay Bran

  • Lee, Ming-Yi;Tsai, Shu-Hsien;Kuo, Yueh-Hsiung;Chiang, Wenchang
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1265-1271
    • /
    • 2008
  • Adlay bran is a waste product previously thought to have no commercial value, Its methanolic extract was fractionated using n-hexane (ABM-Hex), ethyl acetate (ABM-EtOAc), 1-butanol (ABM-BuOH), and water (ABM-$H_2O$). The ABM-EtOAc fraction exhibited a strongest inhibition against growth of human lung cancer cell A549 and human colorectal carcinoma cells HT-29 and COLO 205. Inhibition of cell cycle progression at $G_0/G_1$ transition, increase of cells at the sub-$G_1$ phase, and DNA ladders were observed in cells treated with ABM-EtOAc. The ABM-BuOH fraction showed the strongest inhibition of proinflammatory cytokines tumor necrosis factor (TNF)-$\alpha$ and interlukin (IL)-$1{\beta}$ in stimulated RAW 264.7 macrophages. Further, ABM-EtOAc and ABM-BuOH inhibited cyclooxygenase (COX)-2 expression in A549 and HT-29 carcinoma cells, while COX-l expression was not affected. These results reveal that both ABM-EtOAc and ABM-BuOH may aid the prevention of cancers and the applications in cancer chemotherapy.

USP15 inhibits multiple myeloma cell apoptosis through activating a feedback loop with the transcription factor NF-κBp65

  • Zhou, Lili;Jiang, Hua;Du, Juan;Li, Lu;Li, Rong;Lu, Jing;Fu, Weijun;Hou, Jian
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.11.1-11.12
    • /
    • 2018
  • USP15 has been shown to stabilize transcription factors, to be amplified in many cancers and to mediate cancer cell survival. However, the underlying mechanism by which USP15 regulates multiple myeloma (MM) cell proliferation and apoptosis has not been established. Here, our results showed that USP15 mRNA expression was upregulated in MM patients. USP15 silencing induced MM cell proliferation inhibition, apoptosis, and the expression of nuclear and cytoplasmic NF-${\kappa}Bp65$, while USP15 overexpression exhibited an inverse effect. Moreover, in vivo experiments indicated that USP15 silencing inhibited MM tumor growth and NF-${\kappa}Bp65$ expression. PDTC treatment significantly inhibited USP15 overexpression-induced cell proliferation, apoptosis inhibition, and NF-${\kappa}Bp65$ expression. USP15 overexpression promoted NF-${\kappa}Bp65$ expression through inhibition of its ubiquitination, whereas NF-${\kappa}Bp65$ promoted USP15 expression as a positive regulator. Taken together, the USP15-NF-${\kappa}Bp65$ loop is involved in MM tumorigenesis and may be a potential therapeutic target for MM.

Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model

  • Ayyappan, Janeesh Plakkal;lizardo, Kezia;Wang, Sean;Yurkow, Edward;Nagajyothi, Jyothi F
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.386-394
    • /
    • 2019
  • Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor ($P-elF2{\alpha}$) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.

Partial Purification of Antifertilizing Factor from Seminal Plasma (정장내의 Antifertilizing factor의 분리 및 정제)

  • Kim, S.W.;Baik, C.S.;Kim, J.M.;Suh, B.H.;Lee, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.17 no.2
    • /
    • pp.197-202
    • /
    • 1990
  • Early studies demonstrated that seminal plasma has a factor which inhibits fertilizing ability in a reversible manner. The factor can be precipitated by centrifugation at 104000g for 18 hr. The precipitate was applied to a CM cellulose column and eluted with high salt concentration. This fraction possessed antifertilizing activity was applied to a Sephacryl S-200 column according to a modification of the method of Reddy et al. Using such inhibition of in vitro fertilization ability as an assay, we have carried our experiments to purified the factor. When the factor was added to IVF medium, 70-80% of fertilization was inhibited.

  • PDF

Curcumin Inhibits Osteoclastogenesis by Decreasing Receptor Activator of Nuclear Factor-κB Ligand (RANKL) in Bone Marrow Stromal Cells

  • Oh, Sora;Kyung, Tae-Wook;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.486-489
    • /
    • 2008
  • Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the co-culture system, and to reduced expression of RANKL in $IL-1{\alpha}$-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin $E_2$ ($PGE_2$) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.

Evaluation of Inhibitory Potentials of Chinese Medicinal Plants on Platelet-Activating Factor (PAF) Receptor Binding

  • Fan, Gao-Jun;Han, Byung-Hoon;Kang, Young-Hwa;Park, Man-Ki
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2001
  • Methanol extracts of eighty Chinese medicinal plants were investigated for platelet-activating factor (PAF) receptor binding inhibitory activity using rabbit platelet. Extracts of Cratoxylon ligustrinum, Kalimeris indica, Euonymus japonica, Ophiopogon japonicus, Gleditsia sinensis, Clausena lansium, Agave sisalana were found to exhibit significant inhibitory effects. Chloroform partition of the Methanol extract of Kalimeris indica was further fractionated by column chromatography to afford one strong active subfraction with 93.6% inhibition at a concentration of $100{\mu}g/ml$.

  • PDF