• 제목/요약/키워드: Inhibition ELISA

검색결과 279건 처리시간 0.028초

으뜸도라지추출물이 RBL-2H3 세포에서 탈과립과 염증매개물질의 분비 억제에 미치는 영향 (Inhibitory effect of the aqueous extract of a tetraploid 'etteum' variety in Platycodon grandiflorum on degranulation and inflammatory mediator release in RBL-2H3 cells)

  • 정재인;김형서;지한결;이현숙;이재용;김은지
    • Journal of Nutrition and Health
    • /
    • 제51권3호
    • /
    • pp.208-214
    • /
    • 2018
  • 본 연구는 으뜸도라지추출물의 항알레르기 효과를 조사하기 위해 실시하였다. 으뜸도라지추출물 (50, 100 및 $200{\mu}g/mL$) 처리에 따른 RBL-2H3 비만세포의 세포독성을 조사한 결과 으뜸도라지추출물은 모든 농도에서 세포독성이 관찰되지 않았고, ${\beta}$-hexosaminidase assay를 통해 비만세포의 탈과립 억제능을 평가한 결과 재래종도라지추출물과 비교하여 ${\beta}$-hexosaminidase 억제능이 10배 뛰어남을 확인 하였다. 또한 으뜸도라지추출물은 RBL-2H3 비만세포에서 탈과립 후 유리되는 대표물질인 IL-4, $TNF-{\alpha}$, $PGE_2$$LTB_4$의 생성 분비를 현저히 감소시켰고, 이러한 효과는 재래종도라지와 비교하여 월등한 것으로 나타났다. 이상의 결과는 으뜸도라지추출물이 알레르기 반응을 효과적으로 억제함을 제시하며 향후 항알레르기 기능성 소재로 개발 가능성이 있음을 나타낸다.

Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells

  • Ma, Xiao;Wang, Ruihong;Yu, Shitian;Lu, Guicong;Yu, Yongxiong;Jiang, Caode
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1458-1466
    • /
    • 2020
  • Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 ㎍/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPS-induced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.

창출(蒼朮) 에탄올 추출물이 비만세포 매개 염증반응에 미치는 영향 (The Effects of Ethanol Extract from Atractylodes Chinensis Rhizome on the Mast Cell-Mediated Inflammatory Responses)

  • 김선민;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제24권1호
    • /
    • pp.45-63
    • /
    • 2011
  • Objective : Atractyloides Chinensis Rhizome (ACR) is widely used in oriental medicine as a remedy for an inflammation and an allergic disease. However, as yet there is no clear explanation of how ACR affects the production of inflammatory cytokine. This study was to determine the effects of ACR on the mast cell-mediated inflammatory responses. Method : The amount of inflammatory cytokine production induced by the phorbol myristate acetate (PMA) plus calcium ionophore(A23187) in the human mast cell line (HMC-1) incubated with various concentrations of ACR was measured. The TNF-${\alpha}$ protein levels were analysised by Western blots. The TNF-${\alpha}$, IL-6 and IL-8 secreted protein levels were measured by the ELISA assay. The TNF-${\alpha}$, IL-6 and IL-8 mRNA levels were measured by the RT-PCR analysis. NF-${\kappa}$B, phospho-I${\kappa}$B and MAPKs were examined by Western blot analysis. The NF-${\kappa}$B promoter activity was examined by a luciferase assay. Results : 1. The expressions of TNF-${\alpha}$ and TNF-${\alpha}$ mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$. 2. The expressions of IL-6 and IL-6 mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$. 3. The expressions of IL-8 and IL-8 mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$ specially. 4. The expressions of Phosphorylated-JNK were decreased, not p38, ERK 5. The expressions of NF-${\kappa}$B were decreased dose-dependently at 0.1-0.2mg/$m\ell$ of ACR. The expressions of Phosphorylated I${\kappa}$B were significantly decreased at 0.2mg/$m\ell$. In addition, ACR suppressed PMA plus A23187-induced NF-${\kappa}$B promoting activity. Conclusion : It is suggested that ACR should suppress through inhibition of NF-${\kappa}$B activity and cytokine production.

Effect of trans-10, cis-12 Conjugated Linoleic Acid on Production of Prostaglandin E2, Cyclooxygenase-2 and 5-lipoxygenase in Lipopolysaccharide-Stimulated Porcine Peripheral Blood Mononuclear Cells

  • Seo, Hae-Ryun;Ahn, Changhwan;Kang, Byeong-Teck;Kang, Ji-Houn;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제33권4호
    • /
    • pp.194-199
    • /
    • 2016
  • The objective of this study was to examine the effect of trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) on the expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs). t10c12-CLA was treated with different concentrations in culture medium of LPS$na{\ddot{i}}ve$ and LPS-stimulated PBMCs. The mRNA expressions of prostaglandin $E_2$ ($PGE_2$)-synthase, COX-2 and 5-LOX were measured using quantitative real-time PCR. In addition, the production levels of $PGE_2$ and 5-LOX in culture supernatant from PBMCs with or without LPS were assessed by ELISA. In LPS$na{\ddot{i}}ve$ PBMCs, treatment of t10c12-CLA significantly (p < 0.05) increased the mRNA expressions of PGE2 synthase and 5-LOX compared to vehicle control. Expression of COX-2 mRNA did not show significant difference compared to vehicle control by t10c12-CLA treatment in LPS$na{\ddot{i}}ve$ PBMCs. However, the addition of LPS in PBMCs markedly (p < 0.05) increased the mRNA expression of COX-2, $PGE_2$ synthase and 5-LOX, and also significantly (p < 0.05) enhanced the production of $PGE_2$ and 5-LOX relative to LPS$na{\ddot{i}}ve$ PBMCs, respectively. However, the addition of t10c12-CLA significantly (p < 0.01) suppressed the LPS-induced excessive expression of COX-2, $PGE_2$ synthase, and 5-LOX compared to those of PBMCs treated with LPS alone. The production levels of $PGE_2$ and 5-LOX in culture supernatant from LPS-stimulated PBMCs were also significantly (p < 0.05) inhibited by the treatment of t10c12-CLA compared to LPS alone. These results suggested that t10c12-CLA has an anti-inflammatory effect via dual inhibition of COX-2 and 5-LOX with gene expression and production level in LPS-stimulated porcine PBMCs. Therefore, it was thought that t10c12-CLA can attenuate the inflammatory response by down-regulation of eicosanoids production.

육계약침액이 LPS로 유도된 대식세포의 염증반응에 미치는 영향 (Effects of $Cinnamomi$ $Cortex$ Pharmacopuncture on LPS-induced Inflammatory Response in Macrophage)

  • 김형석;노정두
    • Journal of Acupuncture Research
    • /
    • 제29권1호
    • /
    • pp.15-24
    • /
    • 2012
  • Objectives : In recent years, many studies have been widely researching anti-inflammation effect of various medicinal plants. $Cinnamomi$ $Cortex$ was not enough in researching of the anti-inflammation. Moreover, there is no comparative study about extraction methods. Therefore, we investigated the inhibitory effects of $Cinnamomi$ $Cortex$ pharmacopuncture by EtOH and Hot water extraction on Nitric oxide(NO), Prostaglandin E2(PGE2) production, Cyclooxygenase(COX)-2, inducible NOS(iNOS) expression and extracellular signal regulate kinase(ERK)1/2 phosphorylation in lipopolysaccharide(LPS) induced RAW 264.7 macrophage cell. Methods : $Cinnamomi$ $Cortex$ was extracted by EtOH and Hot water. RAW 264.7 macrophage cell viability was measured by MTT assay. Effect of $Cinnamomi$ $Cortex$ pharmacopuncture on NO and PGE2 production in LPS induced macrophages was accessed by Griess assay and enzyme-linked immunospecific assay(ELISA), respectively. Inhibition effect on COX-2, iNOS expression and ERK1/2 phosphorylation was examined by Immunoblotting assay. Results : 1. Cytotoxic effect of $Cinnamomi$ $Cortex$ pharmacopuncture by Hot water extraction in RAW 264.7 macrophages was not appeared, except $3125{\mu}g/m{\ell}$. And cytotoxic effect was not appeared in EtOH extraction method. 2. $Cinnamomi$ $Cortex$ pharmacopuncture by EtOH and Hot water extraction inhibited NO production in LPS induced macrophages significantly. 3. $Cinnamomi$ $Cortex$ pharmacopuncture by EtOH and Hot water extraction inhibited PGE2 production in LPS induced macrophages significantly. 4. $Cinnamomi$ $Cortex$ pharmacopuncture by EtOH and Hot water extraction inhibited COX-2, iNOS expression in LPS induced macrophages. Especially, it has been confirmed that COX-2, iNOS expression were effectively inhibited in Hot water extraction. 5. $Cinnamomi$ $Cortex$ pharmacopuncture by EtOH and Hot water extraction inhibited ERK1/2 phosphorylation in LPS induced macrophages. Especially, it has been confirmed that ERK1/2 phosphorylation was effectively inhibited in Hot water extraction. Conclusions : According to the results, $Cinnamomi$ $Cortex$ pharmacopuncture suppresses NO, PGE2 production, COX-2, iNOS expression and ERK1/2 phosphorylation in LPS induced macrophages. It has a potential for treating various inflammatory diseases, and Hot water extraction method could be used more extensively than EtOH extraction method.

류마티스 관절염 환자의 말초혈액 단핵세포에서 Phosphoinositide 3-Kinase (PI3K)/Akt와 Nuclear Factor KappaB (NF-κB) 신호전달을 통한 IL-17 생성조절 (Regulation of Interleukin-17 Production in Patients with Rheumatoid Arthritis by Phosphoinositide 3-kinase (PI3K)/Akt and Nuclear Factor KappaB (NF-κB) Dependent Signal Transduction Pathway)

  • 김경운;조미라;이상헌;민소연;박미경;박성환;주대명;김호연
    • IMMUNE NETWORK
    • /
    • 제3권4호
    • /
    • pp.310-319
    • /
    • 2003
  • Inflammatory mediators has been recognized as an important role in the pathogenesis of rheumatoid arthritis (RA). IL-17 is increasingly recognized as an important regulator of immune and inflammatory responses, including induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence of the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. However, the signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in the regulation of IL-17 production in RA. PBMC were separated from RA (n=24) patients, and stimulated with various agents (anti CD3, anti CD28, PHA, ConA, IL-15). IL-17 levels were determined by sandwich ELISA and RT-PCR. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody, PHA, IL-15 or MCP-1 (P<0.05). ConA also strongly induced IL-17 production (P<0.001), whereas TNF-alpha, IL-1beta, IL-18 or TGF-beta did not. IL-17 was detected in the PBMC of patients with osteoarthritis (OA) but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K-Akt pathway and activation of the PI3K-Akt pathway resulted in a pronounced augmentation of nuclear factor kappaB ($NF-{\kappa}B$). IL-17 production by activated PBMC in RA is completely or partially blocked in the presence of $NF-{\kappa}B$ inhibitor PDTC and PI3K-Akt inhibitor, wortmannin and LY294002, respectively. Whereas the inhibition of AP-1 and extracellular signal-regulated kinase (ERK)1/2 did not affect IL-17 production. These results provide new insight into that PI3K/Akt and $NF-{\kappa}B$ dependent signal transduction pathway could be involved in the overproduction of key inflammatory cytokine, IL-17 in rheumatoid arthritis.

화피(樺皮)의 항염(抗炎) 효과(效果)에 관(關)한 연구(硏究) (Anti-inflammatory Effects of an Ethanolic Extract form Betula Platyphylla)

  • 유미현;박은경;김영훈;이연아;이상훈;양형인;홍승재;백용현;박동석;한정수;유명철;김경수
    • 대한한의학회지
    • /
    • 제27권1호
    • /
    • pp.184-195
    • /
    • 2006
  • Objectives : Betula Platyphylla(BP) is a traditional analgesic, anti-fungal, anti-inflammatory herb used in Chinese 1medicine. However, no information is available to explain its action. In this study. we investigated the anti-inflammatory 1effects of BP to elutidate the molecular pharmacological activity in the ethanol extract of BP(BPE). Methods : We performed WTS assay in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages with BPE. Nitrite was measured by Griess assay, prostaglandin E2 (PGE2) by enzyme-linked immunosorbent assay (ELISA) in LPS induced RAW264.7 macrophages with BPE. Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were determined by Western blot. Activation of nuclear factor-kappaB (NF-kB) was measured by electrophoretic mobility shift assay (EMSA). Results : BPE significantly suppressed production of nitric oxide (NO) and PGE2 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. The maximal inhibition rate of NO and PGE2 production by BPE was ca. 88.8% and 93% at the concentration of $100{\mu}g/ml$ (non-cytotoxic concentration), respectively. BPE also decreased iNOS protein and COX-2 protein in LPS-induced RAW264.7 macrophages. EMSA demonstrated that BPE inhibited the DNA binding activity of the NF-kB. Conclusions : These results suggest that BPE inhibits NF-${\kappa}B$-mediated gene expression and downregulates inflammatory mediator production in RAW264.7 macrophages.

  • PDF

Regulatory effects of Seogakjihwang-tang on Cytokines and Growth Factor Production in PBMC from the Patient with Cerebral infarction under Consciousness Disorders

  • Kim Yo Han;Sung Kang Keyng;Lee Kwang Ro;Lee Sang Kwan;Cheong Sang Su;Kang Sei Young;Lee So Young
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.829-836
    • /
    • 2003
  • Seogakjihwang-tang (SJT) was widely used to treat patients suffering from cerebral infarction. But scientific investigation has been carried out very little. The aim of the present study is to investigate the effect of SJT on the production of various cytokines in the patients with cerebral infarction (CI). We investigated interleukin (IL)-4, IL-10 and transforming growth factor (TGF)-1 in the sera of 27 patients with cerebral infarction under consciousness disorders and 10 normal controls using an originally devised sensitive sandwich enzyme-linked immunosorbent assay (ELISA). We found that plasma levels of IL-4 were slightly elevated in patients with cerebral infarction, whereas plasma levels of IL-10 (P<0.001) and TGF-1 were reduced. Peripheral blood mononuclear cells (PBMC) obtained from the patient with CI were cultured for 24 h in the presence or absence of lipopolysaccharide (LPS) or phytohaemagglutinin (PHA). The amount of IL-4, IL-10 and TGF-1, in culture supernatant, was significantly increased in the LPS or PHA treated cells compared to unstimulated cells (P<0.05), We also show that increased cytokines IL-4, and IL-10 level was significantly inhibited by SJT in a dose-dependent manner. Maximal inhibition rate of IL-4 and IL-10 production by SJT was 45.63.3% and 614.7% for LPS-stimulated cell and 27.31.2% and 83.62% for PHA-stimulated cells, respectively (P<0.05). On the other hand, SJT significantly increased the LPS or PHA-induced TGF-1 production (P<0.05). These data suggest that SJT has a regulatory effect on the cytokines production, which might explain its beneficial effect in the treatment of CI.

Clinical and molecular biological aspect of the hyaluronidases: basis and clinical overview for oriental medical application

  • Kim, Cheorl-Ho;Lee, Dong-Gyu;Jang, Jun-Hyouk;Kim, Jong-De;Nam, Kyung-Soo;Kim, Jeong-Joong;Park, Jong-Kun;Choo, Young-Kug;Kim, Hyung-Min;Lee, Young-Choon
    • Advances in Traditional Medicine
    • /
    • 제1권1호
    • /
    • pp.8-27
    • /
    • 2000
  • Components of extracellular matrix and the matrix-degrading enzymes are some of the key regulators of tumor metastasis and angiogenesis. Hyaluronic acid (HA), a matrix glycosaminoglycan, is known to promote tumor adhesion and migration, and its small fragments are angiogenic. Until now, we have compared levels of hyaluronidase, an enzyme that degrade HA, in normal adult prostate, benign prostate hyperplasia and prostate cancer tissues and in conditioned media from epithelial explant cultures, using a substrate (HA)-gel assay and ELISA-like assay (Kim et al., unpublished results). The present review described an overall characterization of hyaluronidases and its application to human diseases. The hyaluronidases are a family of enzymes that have, until recently, deed thorough explication. The substrate for these enzymes, hyaluronan, is becoming increasingly important, recognized now as a major participant in basic processes such as cell motility, wound healing, embryogenesis, and implicated in cancer progression. And in those lower life forms that torment human beings, hyaluronidase is associated with mechanisms of entry and spread, e.g. as a virulence factor for bacteria, for tissue dissection in gas gangrene, as a means of treponema spread in syphilis, and for penetration of skin and gut by nematode parasites. Hyaluronidase also comprises a component of the venom of a wide variety of organisms, including bees, wasps, hornets, spiders, scorpions, sh, snakes and lizards. Of particular interest is the homology between some of these venom hyaluronidases and the enzyme found in the plasma membrane of mammalian spermatozoa, attesting to the ancient nature of the conserved sequence, a 36% identity in a 300 amino acid stretch of the enzyme protein. Clearly, hyaluronidase is of biological interest, being involved in the pathophysiology of so many important' human disorders. Greater effort should be made in studying this family of enzymes that have, until recently, been overlooked. Also, oriental medical application of the hyaluronidase will be discussed with respect to inhibition and suppression of inflammation and malignacy.

  • PDF

대식세포주에서 인슐린이 $I{\kappa}B/NF-{\kappa}B$ 경로 활성화에 미치는 영향 (Role of Insulin in the Activation of $NF-{\kappa}B/I{\kappa}B$ Pathway in Macrophage Cells)

  • 이상민;장연실;이춘택;김영환;한성구;심영수;유철규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제68권3호
    • /
    • pp.168-174
    • /
    • 2010
  • Background: Sepsis still has a high mortality rate despite adequate supportive care. Newer therapeutic modalities have been developed but they have generally ended in failure. Recently, insulin was reported to have an anti-inflammatory effect by inhibiting the $I{\kappa}B/NF-{\kappa}B$ pathway, and may have therapeutic potential in sepsis. However, the precise mechanism of the anti-inflammatory effect of insulin is unclear. This study examined the role of insulin in activating $I{\kappa}B/NF-{\kappa}B$ in macrophage. Methods: Raw 264.7 cells, a murine macrophage cell line, were used in this experiment. Western blotting using $I{\kappa}B$ Ab and phosphor-specific $I{\kappa}B$ Ab was performed to evaluate the degradation and phosphorylation of $I{\kappa}B$ cells. For the $I{\kappa}B$ Kinase (IKK) activity, an immune complex kinase assay was performed. The level of interleukin-6 (IL-6) was measured by ELISA to determine the level of proinflammatory cytokine. Results: $I{\kappa}B{\alpha}$ degradation began 30 min after lipopolysaccharide (LPS) treatment. However, an insulin pretreatment suppressed the $I{\kappa}B{\alpha}$ degradation caused by the LPS treatment. The phosphorylation of $I{\kappa}B{\alpha}$ and IKK activity was also inhibited by the insulin pretreatment. Finally, the insulin pretreatment showed a tendency to suppress the induction of IL-6 by LPS. Conclusion: Insulin might have an anti-inflammatory effect though partial inhibition of the $I{\kappa}B/NF{\kappa}B$ pathway in macrophage cell lines.