• Title/Summary/Keyword: Ingot mold

Search Result 23, Processing Time 0.024 seconds

Mold Design for Large STS Ingot (대형 STS 잉곳 주조용 몰드 설계 기술)

  • Oh, S.H.;NamKung, J.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.43-45
    • /
    • 2008
  • According to industrial development, Ingots are more large and various. In particular large STS ingot. The probability of shrinkage cavity occurrence is higher than carbon steel and alloy steel. To manufacture ultra clean steel the technical development is nearly necessary for example controlling inclusions and total [H]. In this study, after measured the mold temperature and adjusted thermo conductivity of STS steel and compared existing mold to new one with CAE. As a result, the new mold more reduced than existing mold for the probability of shrinkage cavity occurrence.

  • PDF

Optimization of Ingot Mold Design Parameters for Austenite Heat-resistant Steel Through Computational Simulation (전산모사를 통한 오스테나이트계 내열강용 잉곳 몰드 설계 파라미터 최적화)

  • Hwang, SooBeen;Park, JongHwa;Jo, SangHyun;Park, SeongIk;Kim, YunJae;Kim, Donggyu
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • In this study, the parameters on the shrinkage defect of HR3C alloy was secured through computer simulation research, and the ingot mold with greater than 85% of sound area was designed and manufactured. Moreover, the optimized coagulation was proposed at design stage through computer simulation and test was performed upon ingot manufactured. After the test, the defect pattern was analyzed through cutting and non-destructive inspection to verify the parameter and ingot mold design. Based on the verification results, shrinkage defect parameters such as Niyama, Feed Efficiency, and Hot Tear Intensity of HR3C Alloys were obtained. In addition, through the secured parameters, a plan for designing ingot mold with a Non-defect area of 85% or more was secured.

A Study on Mold Filling and Fluidity of Mg Alloy in Thixocasting (Mg합금의 반용융가압주조시 주조조건에 의한 금형충전성 및 유동성 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun- Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 1995
  • Effects of process parameters during thixocasting, such as solid volume fraction, mold temperature and extrusion ratio, on the mold filling behaviour and fluidity of Mg alloy(AZ91D) have been investigated. The semi-solid ingot held for 60 minutes at the semi-solid temperature range did not contain the equilibrium volume fraction of solid as expected from the phase diagram. Therefore, in order to obtain the desired solid fractions, and to suppress the exaggerated grain growth during heating, it was required to heat the ingot rapidly up to the temperature $10^{\circ}C$ higher than the semi-solid temperature suggested from the phase diagram for a specific volume fraction of solid. The experimental results show that mold filling behaviour and fluidity can be improved with the use of the higher mold temperature and the lower volume fraction of solid, but remain nearly unaffected by the change of extrusion ratio.

  • PDF

Study on the Fabrication of a Large Steel Ingot with the Ultra Clean and Low Hot Top Ratio (저압탕 고청정 대형 잉고트 제조 연구)

  • Oh, S.H.;Lee, D.H.;Kim, N.S.;NamKung, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.91-93
    • /
    • 2009
  • A large steel ingot needs to be larger and larger in size and an ultra high clean, no defect in quality with a low hot top ratio for the resent heavy industry. The demands are very difficult to achieve simultaneously because of their contradictive effect to each other in results. In this study, 30ton steel ingot was cast in a foundry with an optimized design parameter of cast mold and cast process conditions for the low hot top ratio, 12%. The cast ingot was analyzed in macro defect, segregations, and cleanness. No macro defect was founded in central surface of the ingot. The degree of segregation and cleanness are in the controlled range with a sound quality.

  • PDF

Uranium ingot casting method with Uranium deposit in a Pyroprocessing (사용후핵연료 파이로 공정 중 우라늄 전착물의 잉곳 제조 방법)

  • Lee, Yoon-Sang;Cho, Choon-Ho;Lee, Sung-Ho;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • The uranium ingot casting process is one of the steps which consolidate uranium deposits produced by electrorefiner as an ingot form in a pryprocessing technique. This paper introduces new design concept of the ingot casting equipment and the performance test results of the lab-scale ingot casting equipment fabricated based on the design concept. Casting equipment produces the uranium ingot by pouring an uranium melt into a mold by tilting a melting crucible. Also it is equipped with a cup which is able to continuously feed uranium deposits into a melting crucible. The productivity could be significantly enhanced by introducing the continuous operation concept.

Microstructural Changes during Semi-solid State in Hypereutectic Al-Si Alloy (과공정 Al-Si 합금의 반고상 재가열시 미세조직 변화)

  • Kim, In-Joon;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.541-549
    • /
    • 1998
  • Microstructural characteristics of hypereutectic Al-Si alloys during reheating at semi-solid temperature have been investigated. The size and morphology of primary Si particles in wedge-type mold-cast ingot has been compared with hot-rolled sheet and Si particulate reinforced Al composite. Effects of P and Sr addition on the morphological changes of primary Si particles have been also investigated. Observation of the solidification microstructures of the wedge-type mold-cast ingot at different cooling rates showed that alloying elements such as P and Sr affect the morphology of Si particles, especially in the area solidified at a slow cooling rate. Negligible change in the size of primary crystals was observed after reheating experiment, but ${\alpha}-halo$ formed around the Si particles and fine particles of Si precipitated in the surrounding area of the Si particles. In addition, there seemed to be no coarsening with increasing of holding time and the region of ${\alpha}-halo$ being decreased. Nucleation and recrystallization was accelerated with addition of alloying elements during hot rolling resulting in a decrease of primary Si particle size. In the case of extruded specimens, morphological change of primary Si particles was not observed after reheating. No ${\alpha}-halo$ formation was observed in Si reinforced Al composite because of the oxide film formed on the Si particles which acted as a diffusion barrier between substrate and the primary Si particles.

  • PDF

Microstructural Evolution during Isothermal Heating and Thixoformability of Mg-5%Al Alloy (Mg-5%Al합금의 등온가열에 따른 미세조직변화 및 반응고 성형성)

  • Kim, Jeong-Min;HwangBo, Hyun-Seok;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.246-252
    • /
    • 2001
  • Variation in the microstructure of Mg-5%Al semi-solid slurry during isothermal heating was investigated in relation to initial microstructure, holding time, and holding temperature. Specimens with three different initial microstructures were isothermally heated. Dendritic structure in as-cast ingot was decomposed into solid globules in the semi-solid slurry during isothermal holding, while in the recrystallized specimens prepared by extrusion or rolling the size of solid particles was continuously increased during the heating. Effects of mold temperature and liquid fraction of slurry on the mold filling ability were also studied. Very thin section (0.4 mm) could be successfully filled up to 50 mm by 60% liquid slurry when the mold was heated to $600^{\circ}C$.

  • PDF

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

Behavior of Slip Force in Continuous Flate Casting (평판 강혼 주조용 연주기의 Slip Force 거동에 대하여)

  • Si Young Kim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • An equation was derived which describes the slip force that occurs at the casting of initial state due to unequilibrium with support bar weight, liquid metal, casting velocity, thickness, control roller, hydraulic motor and etc. The slip force equations are solved on the basis of velocity, gravity and thickness in casting ingot. In this paper the auther assumed that the other mechanisms are normal. The behaviour of slip force in many characteristics is calculated as a function of velocity, gravity and thickness with variation. The conclusion with this phenomena is reached that the present theory realistically predicts the growth of slip force in a flat plate ingot continuous casting machine.

  • PDF