• Title/Summary/Keyword: Ingot Efficiency

Search Result 28, Processing Time 0.027 seconds

Scheduling of a Casting Sequence Considering Ingot Weight Restriction in a Job-Shop Type Foundry (잉곳 무게 제한 조건을 고려한 Job-Shop형 주물공장의 스케줄링)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.17-23
    • /
    • 2008
  • In this research article, scheduling a casting sequence in a job-shop type foundry involving a variety of casts made of an identical alloy but with different shapes and II weights, has been investigated. The objective is to produce the assigned mixed orders satisfying due dates and obtaining the highest ingot efficiency simultaneously. Implementing simple integer programming instead of complicated genetic algorithms accompanying rigorous calculations proves that it can provide a feasible solution with a high accuracy for a complex, multi-variable and multi-constraint optimization problem. Enhancing the ingot efficiency under the constraint of discrete ingot sizes is accomplished by using a simple and intelligible algorithm in a standard integer programming. Employing this simple methodology, a job-shop type foundry is able to maximize the furnace utilization and minimize ingot waste.

Fabrication of poly-crystalline silicon ingot for solar cells by CCCC method (CCCC법에 의한 태양전지용 다결정 실리콘 잉고트의 제조)

  • Shin J. S.;Lee D. S.;Lee S. M.;Moon B. M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.94-97
    • /
    • 2005
  • For the fabrication of poly-crystalline silicon ingot, CCCC (Cold Crucible Continuous Casting) method under a high frequency alternating magnetic field, was utilized in order to prevent crucible consumption and ingot contamination and to increase production rate. In order to effectively and continuously melt and cast silicon, which has a high radiation heat loss due to the high melting temperature and a low induction heating efficiency due to a low electric conductivity, Joule and pinch effects were optimized. Throughout the present investigation, poly-crystalline Si ingot was successfully produced at the casting speed of above 1.5 mm/min under a non-contact condition.

  • PDF

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

Optimization of Ingot Mold Design Parameters for Austenite Heat-resistant Steel Through Computational Simulation (전산모사를 통한 오스테나이트계 내열강용 잉곳 몰드 설계 파라미터 최적화)

  • Hwang, SooBeen;Park, JongHwa;Jo, SangHyun;Park, SeongIk;Kim, YunJae;Kim, Donggyu
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • In this study, the parameters on the shrinkage defect of HR3C alloy was secured through computer simulation research, and the ingot mold with greater than 85% of sound area was designed and manufactured. Moreover, the optimized coagulation was proposed at design stage through computer simulation and test was performed upon ingot manufactured. After the test, the defect pattern was analyzed through cutting and non-destructive inspection to verify the parameter and ingot mold design. Based on the verification results, shrinkage defect parameters such as Niyama, Feed Efficiency, and Hot Tear Intensity of HR3C Alloys were obtained. In addition, through the secured parameters, a plan for designing ingot mold with a Non-defect area of 85% or more was secured.

Prediction of Void Crushing Behavior in Upset & Bloom Forging of Large Ingot (대형인곳의 업셋-블룸단조에서의 기공 압착 거동 예측)

  • Kwon I.K.;Kim K.H.;Youn Y.C.;Song M.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.325-328
    • /
    • 2004
  • This paper deals with void crushing behavior by ingot forging process which consists of sequential operations of upset forging and bloom forging. The predicted results of void crushing behavior by the simplified global-local method using F.E. analysis showed that the inherent void at the top region of the ingots remains incompletely crushed even after several forging operations. From the results of the hot upset forging test using the billets with drilled voids, it was found that the bonding efficiency of the void after forging process increases with an increase in deformation, and a decrease of initial diameter of voids.

  • PDF

A Study of Optimum Growth Rate on Large Scale Ingot CCz (Continuous Czochralski) Growth Process for Increasing a Productivity (생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구)

  • Lee, Yu-Ri;Roh, Ji-Won;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.775-780
    • /
    • 2016
  • Recently, photovoltaic industry needs a new design of Czochralski (Cz) process for higher productivity with reasonable energy consumption as well as solar cell's efficiency. If the process uses the large size reactor for increasing productivity, it is possible to produce a 12-inch, rather than the 8-inch. Also the continuous czochralski process method can be maximized to increase productivity. In this study, it was designed to improve the yield value of ingot with optimal condition which reduce consumption of electrical power. It has increased the productivity of the 12-inch ingot process condition by using CFD simulation. I have found optimal growth rate, by comparing each growth rate the interface shape, Temperature gradient, power consumption. As a result, the optimal process parameters of the growth furnace has been derived to improve for the productivity and to reduce energy. This study will contribute to the improvement of the productivity in the solar cell industry.

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

Investigation on the forging process of HIP rotor for USC power plant (USC 발전용 HIP Rotor의 단조 공정 연구)

  • Kim D. K.;Kim Y. D.;Kang S. T.;Kim D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • To improve the efficiency of fossil power plant, the higher steam temperature and pressure are required. Ultra super critical(USC) system meets very well this requirement. The HIP rotor is one of the most important parts of turbine in USC system and its material is easy to crack during hot forging. In this study, the upsetting and cogging process far $12\%Cr$ ESR ingot was analyzed and it is suggested a optimum process to avoid surface crack. The results were verified by test product with 4,200 tonnage press.

  • PDF

A Czochralski Process Design for Si-single Crystal O2 Impurity Minimization with Pulling Rate, Rotation Speed and Melt Charge Level Optimization (Pulling rate, rotation speed 및 melt charge level 최적화에 의한 쵸크랄스키 공정 실리콘 단결정의 O2 불순물 최소화 설계)

  • Jeon, Hye Jun;Park, Ju Hong;Artemyev, Vladimir;Hwang, Seon Hee;Song, Su Jin;Kim, Na Yeong;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.369-380
    • /
    • 2020
  • Most mono-crystalline silicon ingots are manufactured by the Czochralski (Cz) process. But If there are oxygen impurities, These Si-ingot tends to show low-efficiency when it is processed to be solar cell substrate. For making single-crystal Si- ingot, We need Czochralski (Cz) process which melts molten Si and then crystallizing it with seed of single-crystal Si. For melts poly Si-chunk and forming of single-crystalline Si-ingot, the heat transfer plays a main role in the structure of Cz-process. In this study to obtain high-quality Si ingot, the Cz-process was modified with the process design. The crystal growth simulation was employed with pulling rate and rotation speed optimization. Studies for modified Cz-process and the corresponding results have been discussed. The results revealed that using crystal growth simulation, we optimized the oxygen concentration of single crystal silicon by the optimal design of the pulling rate, rotation speed and melt charge level of Cz-process.

Development of Casting Furnace for Directional Solidification Ingot (잉곳의 방향성 응고를 위한 주조 로 개발)

  • Ju, Jin-Young;Lee, Seung-Jun;Baek, Ha-Ni;Oh, Hun;Cho, Hyun-Seob;Lee, Choong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.808-816
    • /
    • 2012
  • This paper is the study for the directional solidification of the ingot through the thermal analysis simulation and structural change of casting furnace. With the results of thermal analysis simulation, the silicon as a whole has reached the melting temperature as the retention time 80 min. The best cooling conditions showed at the upper cooling temperature $1,400^{\circ}C$ and cooling time 60min. The fabricated wafers showed the superior etching result at the grain boundary than that of existing commercial wafers. The FTIR measurements of oxygen and carbon impurities were not in the critical value for solar conversion efficiency. The NAA analysis of metal impurities were also detected the total number of 18 different metals, but the concentration distribution showed no significant positional deviations in the same position from the top to the bottom.