• Title/Summary/Keyword: Infrared thermography Camera

Search Result 75, Processing Time 0.025 seconds

The Change of Clothing Insulation and Surface Temperature Measured by Thermography with the Ease of Pattern (의복의 여유분에 따른 단열력의 변화와 Thermogram을 활용한 의복 표면 온도 특성 분석)

  • Lee, Byung-Cheol;Hong, Kyung-Hi;Lee, Ye-Jin
    • Korean Journal of Human Ecology
    • /
    • v.19 no.6
    • /
    • pp.1045-1052
    • /
    • 2010
  • Effects of the ease of pattern on the thermal conditions of clothing were investigated through the measurement of clothing surface temperatures using infrared thermography. Four vests with different pattern ease were worn by five male subjects. Surface temperature distribution on the clothing were then examined using a thermogram to view thermo-regulating characteristics affected by the ease of pattern. Representative surface temperatures were calculated based on the percentage of the surface area within a certain temperature range and the midpoint value of the corresponding area. Representative surface temperatures matches well to the thermal insulation value measured by thermal manikin. Results indicated that representative surface temperature could be a useful quantitative value if some simple calculations were to be used alongside accurate image processing.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

Assessing the Potential of Thermal Imaging in Recognition of Breast Cancer

  • Zadeh, Hossein Ghayoumi;Haddadnia, Javad;Ahmadinejad, Nasrin;Baghdadi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8619-8623
    • /
    • 2016
  • Background: Breast cancer is a common disorder in women, constituting one of the main causes of death all over the world. The purpose of this study was to determine the diagnostic value of the breast tissue diseases by the help of thermography. Materials and Methods: In this paper, we applied non-contact infrared camera, INFREC R500 for evaluating the capabilities of thermography. The study was conducted on 60 patients suspected of breast disease, who were referred to Imam Khomeini Imaging Center. Information obtained from the questionnaires and clinical examinations along with the obtained diagnostic results from ultrasound images, biopsies and thermography, were analyzed. The results indicated that the use of thermography as well as the asymmetry technique is useful in identifying hypoechoic as well as cystic masses. It should be noted that the patient should not suffer from breast discharge. Results: The accuracy of asymmetry technique identification is respectively 91/89% and 92/30%. Also the accuracy of the exact location of identification is on the 61/53% and 75%. The approach also proved effective in identifying heterogeneous lesions, fibroadenomas, and intraductal masses, but not ISO-echoes and calcified masses. Conclusions: According to the results of the investigation, thermography may be useful in the initial screening and supplementation of diagnostic procedures due to its safety (its non-radiation properties), low cost and the good recognition of breast tissue disease.

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

Thermography-based coating thickness estimation for steel structures using model-agnostic meta-learning

  • Jun Lee;Soonkyu Hwang;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • This paper proposes a thermography-based coating thickness estimation method for steel structures using model-agnostic meta-learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured using an infrared (IR) camera. The measured heat responses are then analyzed using model-agnostic meta-learning to estimate the coating thickness, which is visualized throughout the inspection surface of the steel structure. Current coating thickness estimation methods rely on point measurement and their inspection area is limited to a single point, whereas the proposed method can inspect a larger area with higher accuracy. In contrast to previous ANN-based methods, which require a large amount of data for training and validation, the proposed method can estimate the coating thickness using only 10- pixel points for each material. In addition, the proposed model has broader applicability than previous methods, allowing it to be applied to various materials after meta-training. The performance of the proposed method was validated using laboratory-scale and field tests with different coating materials; the results demonstrated that the error of the proposed method was less than 5% when estimating coating thicknesses ranging from 40 to 500 ㎛.

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

Interpretation of Making Techniques and Nondestructive Diagnosis for the Clay Statues in Donggwanwangmyo Shrine, Seoul (서울 동관왕묘 소조상의 비파괴진단 및 제작기법 해석)

  • Yi, Jeong Eun;Han, Na Ra;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • The Clay Statues of Donggwanwangmyo Shrine (Treasure No. 142) are highly damaged physical weathering which are crack, exfoliation. Pigment of surface are discolored by chemical weathering like dust. The result of ultrasonic velocity measurement, low velocity zone was measured the lowest part of Woojanggun Statue. Deficiency condition of pigment layer was evaluated quantitatively through infrared Thermography. As a result, exfoliation part was detected at high temperature. Making techniques of the Clay statues were identified by gamma rays, infrared TV, SEM. All Clay Statues were founded on wood base and joints of wood were fixed using thin iron wires. After wood base was twisted a straw rope, it was made by clay. Clay was blended with rice straw to prevention of crack and exfoliation. The upper side of clay layer was coated with Hanji(Korean handmade paper) and cotton in order to isolate the pigment layer.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

Thermal Environment Evaluation of Wooden House Using Infra-red Thermal Image and Temperature Difference Ratio (TDR) (적외선열화상과 온도차비율법을 이용한 목조 주택의 열환경평가)

  • Chang, Yoon-Seong;Eom, Chang-Deuk;Park, Jun-Ho;Lee, Jun-Jae;Park, Joo-Saeng;Park, Moon-Jae;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.518-525
    • /
    • 2010
  • Infrared (IR) thermography which is the technique for detecting invisible infrared light emitted by objects due to their surface thermal condition and for producing an image of the light has been applied in various field without damaging the objects. It also could be used indirectly to examine the inside of an object. In this study, insulation property of wooden house in Korea Forest Research Institute (KFRI) was evaluated with according to "Thermal performance of building - Quantitative detection of thermal irregularities in building envelopes - infrared method (KS F 2829)". This method uses "Temperature Difference Ratio (TDR)" between outdoor wall surface and indoor wall surface of wooden building for evaluating its thermal performance. The thermal performance of a room on the 2nd floor of the wooden house was focused in this study and IR thermography on the indoor and outdoor surface of the house was captured by IR camera. Heat loss from the corner and the window of the wooden house as well as wall of the house was quantitatively evaluated and the invisible heat loss in the wall was detected. It is expected that the results from this study could contribute to improve the wooden building energy efficiency.

Visualization and classification of hidden defects in triplex composites used in LNG carriers by active thermography

  • Hwang, Soonkyu;Jeon, Ikgeun;Han, Gayoung;Sohn, Hoon;Yun, Wonjun
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.803-812
    • /
    • 2019
  • Triplex composite is an epoxy-bonded joint structure, which constitutes the secondary barrier in a liquefied natural gas (LNG) carrier. Defects in the triplex composite weaken its shear strength and may cause leakage of the LNG, thus compromising the structural integrity of the LNG carrier. This paper proposes an autonomous triplex composite inspection (ATCI) system for visualizing and classifying hidden defects in the triplex composite installed inside an LNG carrier. First, heat energy is generated on the surface of the triplex composite using halogen lamps, and the corresponding heat response is measured by an infrared (IR) camera. Next, the region of interest (ROI) is traced and noise components are removed to minimize false indications of defects. After a defect is identified, it is classified as internal void or uncured adhesive and its size and shape are quantified and visualized, respectively. The proposed ATCI system allows the fully automated and contactless detection, classification, and quantification of hidden defects inside the triplex composite. The effectiveness of the proposed ATCI system is validated using the data obtained from actual triplex composite installed in an LNG carrier membrane system.