• Title/Summary/Keyword: Infrared analysis

Search Result 2,249, Processing Time 0.041 seconds

Influence of Fluorinated Illite on Thermal, Antibiotic and Far-infrared Emission Properties of Polypropylene Non-woven Fibers (폴리프로필렌 부직포 섬유의 열, 항균 및 원적외선 방사 특성에 미치는 불소화 일라이트 첨가의 영향)

  • Kim, Jinhoon;Im, Ji Sun;Seo, Kyeong-Won;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.86-93
    • /
    • 2013
  • In this work, the thermal, antibiotic properties and far-infrared emissivity of fluorinated illite embedded polypropylene non-woven fibers (f-illite/PP fibers) were investigated in the presence of 0, 1, 3, 5 and 7 wt% illite powders. The thermal properties of f-illite/PP fibers were studied by thermogravimetric analysis (TGA). Their antibiotic properties were examined by Staphylococcus aureus and Klebsiella pneumoniae test. Their far-infrared emissivity was also investigated by Fourier transform infrared spectroscopy. From the experimental results, thermal, antibiotic properties and far-infrared emissivity of f-illite/PP fibers were improved by increasing fluorinated illite contents and the property values of 5 wt% f-illite/PP fibers were increased remarkably by about 10.3, 41.2 and 9.8% respectively in comparison with PP non-woven fibers having no fluorinated illite additive. This result was interpreted as the development of interfacial adhesion force between the polymer chains due to the fluorination of illite power.

Determination of Calibration Curve for Total Nitrogen Contents Analysis in Fresh Rice Leaves Using Visible and Near Infrared Spectroscopy (벼 생체엽신 질소함량 측정을 위한 근적외선분광분석의 검량식 작성)

  • Kwon Young-Rip;Baek Mi-Hwa;Choi Dong-Chil;Choi Joung-Sik;Choi Yeong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.394-399
    • /
    • 2005
  • Near Infrared Spectroscopy (NIRS) has been used as a tool for the rapid, accurate and nondestructive assay of the fresh rice leaf in nitrogen content. NIRS used in this study was visible and near infrared spectroscopy type instrument, Foss model 6500. To obtain a useful calibration equation, standard regression between the data was analyzed by chemical analysis and by NIRS method. Accuracy of calibration equation for nitrogen content on fresh leaf of rice were 0.879, 0.858 and 0.819, respectively. Accuracy of calibration equation after outlier treatment increased as 0.017, 0.02 and 0.061 improved each with 0.896, 0.878 and 0.880, respectively. Calibration equation combined using merge function after accuracy of calibration equation more increased by 0.911. Difference analysis value between calibration equation and lab value by kjeldahl showed $0.001\%$. With this as same result is the possibility of closing the deterioration of the sample in order to omit a construction and pulverization process it is judged with the fact that the nitrogen content measurement of the fresh rice leaf which the possibility of reducing an hour and an expense is by a near infrared spectroscopy technique will be possible.

Detection of Landslide-damaged Areas Using Sentinel-2 Image and ISODATA (Sentinel-2 영상과 자기조직화 분류기법을 활용한 산사태 피해지 탐지 - 2020년 곡성 산사태를 사례로 -)

  • KIM, Dae-Sun;LEE, Yang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.253-265
    • /
    • 2020
  • As the risk of landslide is recently increasing due to the typhoons and localized heavy rains, effective techniques for the landslide damage detection are required to support the establishment of the recovery planning. This study describes the analysis of landslide-damaged areas using ISODATA(Iterative Self-Organizing Data Analysis Technique Algorithm) with Sentinel-2 image, regarding the case of Gokseong in August 7, 2020. A total of 4.75 ha of landslide-damaged areas was detected from the Sentinel-2 image using spectral characteristics of red, NIR(Near Infrared), and SWIR(Shortwave Infrared) bands. We made sure that the satellite remote sensing is an effective method to detect the landslide-damaged areas and support the establishment of the recovery planning, followed by the field surveys that require a lot of manpower and time. Also, this study can be used as a reference for the landslide management for the CAS500-1/2(Compact Advanced Satellite) scheduled to launch in 2021 and the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024.

Rapid discrimination system of Chinese cabbage (Brassica rapa) at metabolic level using Fourier transform infrared spectroscopy (FT-IR) based on multivariate analysis (배추 대사체 추출물의 FT-IR 스펙트럼 및 다변량 통계분석을 통한 계통 신속 식별 체계)

  • Ahn, Myung Suk;Lim, Chan Ju;Song, Seung Yeob;Min, Sung Ran;Lee, In Ho;Nou, Ill-Sup;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis could be used to discriminate Chinese cabbage breeding line at metabolic level, whole cell extracts of nine different breeding lines (three paternal, three maternal and three $F_1$ lines) were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data of Chinese cabbage plants were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA). The hierarchical dendrograms based on PLS-DA from two of three cross combinations showed that paternal, maternal, and their progeny $F_1$ lines samples were perfectly separated into three branches in breeding line dependent manner. However, a cross combination failed to fully discriminate them into three branches. Thus, hierarchical dendrograms based on PLS-DA of FT-IR spectral data of Chinese cabbage breeding lines could be used to represent the most probable chemotaxonomical relationship among maternal, paternal, and $F_1$ plants. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful Chinese cabbage cultivars.

The Cut Off Values for Diagnosing Cold Hypersensitivity of Hands by Using Digital Infrared Thermographic Imaging (적외선 체열 촬영을 이용한 수부냉증 진단의 절단값 산정)

  • Jo, Jun-Young;Park, Kyoung-Sun;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2012
  • Purpose: The purpose of this study is to define the cut off values of cold hypersensitivity of hands by using digital infrared thermographic imaging(DITI). Methods: Thermographic images of 130 patients with cold hypersensitivity of hands(CHHG, n=65) and non-cold hypersensitivity of hands(NCHHG, n=65) were retrospectively reviewed. We used the temperature difference the palm(PC8) and the upper arm(LU4) for diagnosing cold hypersensitivity of hands. The temperature differences of between two groups were analysed using independent samples t-tests. The cut off values were calculated by ROC curve analysis. Analyses were undertaken using SPSS version 17.0. P value of < 0.05 was considered significant. Results: The temperature difference the palm(PC8) and the upper arm(LU4) were significantly different between groups(p < 0.001). Using receiver operating characteristic curve analysis, the sensitivity, specificity, and area under the curve were 70.8%, 73.8%, respectively both hands. The AUC was 0.822 on right hand and 0.818 on left hand. The optimum cut-off value was defined as $-0.05^{\circ}C$. Conclusions: These results suggest that DITI is a reliable instrument for estimating the cold hypersensitivity of hands.

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.

CALIBRATION TRANSFER FROM REFLECTANCE TO INTERACTANCE-REFLECTANCE WITHOUT STANDARDS: USE OF MATHEMATICAL PRETREATMENTS

  • Fernandez Cabanas, Victor-M.;Varo, Garrido;Dardenne, Pierre
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1242-1242
    • /
    • 2001
  • The use of fibre optic probes for NIR quality control in the industry is becoming very important, as it provides a powerful tool to reduce sample analysis time and it facilitates the implementation of on-line analyses. However, most of the applications of fibre optics and probes have been done on suspensions, clear liquids and films, chemical and pharmaceutical products and also on fruits and animal products. Traditional applications of near infrared spectroscopy in agriculture have been developed in reflectance mode and calibration transfer could be an interesting way to reduce efforts. Classical methods for calibration transfer between different instruments involve the use of sealed reference cups, but, as fibre optic analysis does not use cups, it is necessary to develop new methods for calibration transfer without standards (Blank et al., 1996). In this paper, we have studied how the most used mathematical pretreatments (three methods of Multiplicative Scatter Correction, Standard Normal Variate, Detrending and derivatives) and their combinations applied to calibration development can contribute to reduce spectral differences between instruments. Calibration equations were obtained for three sets of cereals (barley, wheat and maize) scanned in reflectance mode and then they were validated with samples analysed in reflectance and interactance-reflectance mode (fibre optic). Preliminary results show how some combination of pretreatments reduce the differences in the predicted values, measured as standard error of differences, facilitating the use of calibrations obtained in reflectance for samples analysed by interactance-reflectance. However, the application of pretreatments is not enough to satisfy the control limits for calibration transfer suggested by Shenk et al. (1992), and it should be necessary to combine them with a specific algorithm for instruments standardization.

  • PDF

Measurement of Fat Content in Potatochips by Near-infrared Spectroscopy (근적외선 분광 분석법에 의한 감자칩의 지방 함량 측정)

  • Bae, Young-Min;Cho, Seong-In;Chun, Jae-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.916-921
    • /
    • 1996
  • This study was conducted to measure fat contents of potatochips by near infrared spectroscopy (NIRS). Both potatochip powder and potatochips were used to find correlations between the absorbance at certain wavelengths find the fat contents. Based on the correlation analysis, linear regression models predicting the fat contents were developed to predict the fat contents. Artificial neural network (ANN) models were also developed. Predicted values were compared to the measured ones. The regression and the ANN model predicting the fat contents of potatochip powder had determination coefficients of 0.93 and 0.92, and standard errors of prediction (SEP) of 1.29% and 1.17%, respectively. The correlation analysis of potatochips showed that the determination coefficients were low. Therefore, the fat contents of not potatochips but potatochip powder could be measured by NIRS.

  • PDF

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Analysis of Lead Ions in a Waste Solution Using Infrared Photo-Diode Electrode

  • Ly, Suw-Young;Lee, Hyun-Kuy;Kwak, Kyu-Ju;Ko, Jun-Seok;Lee, Jeong-Jae;Cho, Jin-Hee;Kim, Ki-Hong;Kim, Min-Seok;Lee, So-Jung
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • To detect lead ions using electrochemical voltammetric analysis, Infrared Photo-Diode Electrode(IPDE) was applied via cyclic and square wave stripping voltammetry. Lead ions were deposited at 0.5 V(versus Ag/AgCl) accumulation potential. Instrumental measurements systems were made based on a simple and compact detection system. The stripping voltammetric and cyclic voltammetric optimal parameters were searched. The results yielded a cyclic range of $40{\sim}240mgl^{-1}$ Pb(II) and a square wave stripping working range of $0.5{\sim}5.00mgl^{-1}$ Pb(II). The relative standard deviation at 2 and 4 $mgl^{-1}$ Pb(II) was 0.04% and 0.02%(n=15), respectively, using the stripping voltammetric conditions. The detection limit was found to be 0.05 $mgl^{-1}$ with a 40 sec preconcentration time. Analytical interference ions were also evaluated. The proposed method was applied to determine lead ions in various samples.