DOI QR코드

DOI QR Code

Detection of Landslide-damaged Areas Using Sentinel-2 Image and ISODATA

Sentinel-2 영상과 자기조직화 분류기법을 활용한 산사태 피해지 탐지 - 2020년 곡성 산사태를 사례로 -

  • KIM, Dae-Sun (Korea Institute of Ocean Science & Technology) ;
  • LEE, Yang-Won (Dept. of Spatial Information Engineering, Pukyong National University)
  • 김대선 (한국해양과학기술원) ;
  • 이양원 (부경대학교 공간정보시스템공학과)
  • Received : 2020.12.07
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

As the risk of landslide is recently increasing due to the typhoons and localized heavy rains, effective techniques for the landslide damage detection are required to support the establishment of the recovery planning. This study describes the analysis of landslide-damaged areas using ISODATA(Iterative Self-Organizing Data Analysis Technique Algorithm) with Sentinel-2 image, regarding the case of Gokseong in August 7, 2020. A total of 4.75 ha of landslide-damaged areas was detected from the Sentinel-2 image using spectral characteristics of red, NIR(Near Infrared), and SWIR(Shortwave Infrared) bands. We made sure that the satellite remote sensing is an effective method to detect the landslide-damaged areas and support the establishment of the recovery planning, followed by the field surveys that require a lot of manpower and time. Also, this study can be used as a reference for the landslide management for the CAS500-1/2(Compact Advanced Satellite) scheduled to launch in 2021 and the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024.

최근 이상기후와 기상이변에 따른 태풍 및 집중호우의 영향으로 산사태 발생 위험성이 증가하고 있으며, 예방을 위한 노력과 함께 이미 발생된 산사태의 복구계획 수립을 위한 효율적인 피해지 탐지기법이 요구된다. 본 연구에서는 산림재해 피해지 분석의 효율적 분석방법인 위성원격탐사를 통해 2020년 8월에 발생한 곡성 산사태 지역에 대해 Sentinel-2 광학영상의 분광특성을 분석하고 자기조직화 분류기법인 ISODATA(Iterative Self-Organizing Data Analysis Techniques Algorithm)를 통해 산사태 피해지 분석을 수행하고 활용가능성을 평가하였다. 실험에서는 식생의 활력도 및 지표면의 수분함량과 관련되는 Red, NIR(Near Infrared), SWIR(Shortwave Infrared) 밴드의 분광특성을 이용하여, 연구지역 내의 산사태 피해지역을 효과적으로 탐지할 수 있었다. 본 연구는 많은 인력과 시간이 소요되는 현장조사에 앞서, 위성영상을 통해 상대적으로 신속 정확하게 산사태 피해지를 특정하는 방법을 제시하였으며, 이는 복구계획 수립을 위한 기초자료의 역할을 할 수 있을 것으로 사료된다. 또한 향후 운용될 국토위성과 농림위성의 산사태 분석에도 적극적으로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 기상청의 기상·지진See-At기술개발연구(KMI2018-05510)의 지원을 받아 수행된 연구임. 또한, 이 논문은 농촌진흥청 공동연구사업(PJ014787042020)의 지원을 받았으며, 이에 감사드립니다.

References

  1. Behling, R., Roessner, S., Kaufmann, H. and Kleinschmit, B. 2014. Automated spatiotemporal landslide mapping over large areas using RapidEye time series data, Remote Sensing, 6(9):8026-8055. https://doi.org/10.3390/rs6098026
  2. Chau, K.T., Wong, R.H.C., Lui, J. and Lee, C.F. 2003. Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mechanics and Rock Engineering 36(5):383-408. https://doi.org/10.1007/s00603-002-0035-z
  3. Dhodhi, M.K., Saghri, J.A., Ahmad, I. and Ul-Mustafa, R. 1999. D-ISODATA: A distributed algorithm for unsupervised classification of remotely sensed data on network of workstations. Journal of Parallel and Distributed Computing. 59(2):280-301. https://doi.org/10.1006/jpdc.1999.1573
  4. Fourniadis, I.G., Liu, J.G. and Mason, P.J. 2007. Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Geomorphology. 84:126-144. https://doi.org/10.1016/j.geomorph.2006.07.020
  5. Kim, D.S., Kim, E.S., Lim, J.H. and Lee, Y.W. 2020. Detection of forest ecosystem disturbance using satellite images and ISODATA. Korean Journal of Remote Sensing. 36(5-1):835-846. https://doi.org/10.7780/KJRS.2020.36.5.1.15
  6. Kim, M., Cho, K., Park, S., Cho, J., Moon, H. and Han, S. 2019. Development of landslide detection algorithm using fully polarimetric ALOS-2 SAR Data. Economic and Environmental Geology. 52(4):313-322. https://doi.org/10.9719/EEG.2019.52.4.313
  7. Kim, N. and Lee, Y, 2020. Active fire detection using Landsat 8 OLI images: A case of 2019 Australia fires. Korean Journal of Remote Sensing. 36(5):775-784. https://doi.org/10.7780/kjrs.2020.36.5.1.10
  8. Korea Forest Service. 2020. https://sansatai.forest.go.kr/forecast/introMap.do (Accessed November 18, 2020).
  9. Lee, M.J., Lee, S.R. and Jeon, S.W. 2012. Landslide hazard mapping and verification using probability rainfall and artificial neural networks. Journal of the Korean Association of Geographic Information Studies. 15(2):261-274.
  10. Lim, J., Kim, E., Lee, B., Kim, S. and Jang, K. 2017. An analysis of the hail damages to Korean forests in 2017 by meteorology, species and topography. Korean Journal of Agricultural and Forest Meteorology. 19(4):280-292. https://doi.org/10.5532/KJAFM.2017.19.4.280
  11. Liu, J.P., Mason, P.J., Clerici, N., Chen, S., Davis, A.M., Miao, F., Deng, H. and Liang, L. 2004. Landslide hazard assessment in the three gorges area of the Yangtze river using ASTER imagery: Zigui-Badong. Geomorphology. 61:171-187. https://doi.org/10.1016/j.geomorph.2003.12.004
  12. Memarsadeghi, N., Mount, D.M., Netanyahu, N.S. and Le Moigne, J. 2007. A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry & Applications. 17(1):71-103. https://doi.org/10.1142/S0218195907002252
  13. Mwaniki, M.W., Agutu, N.O., Mbaka, J.G., Ngigi, T.G., and Waithak, E.H. 2015. Landslide scar/soil erodibility mapping using Landsat TM/ETM+ bands 7 and 3 Normalised Difference Index: A case study of central region of Kenya. Applied Geography, 64:108-120. https://doi.org/10.1016/j.apgeog.2015.09.009
  14. Nam, K., Lee, H. and Jung, G. 2014. Analysis of landslide locations using spectral reflectance of clay mineral and ASTER satellite image. The Journal of Engineering Geology. 24(3):411-421. https://doi.org/10.9720/kseg.2014.3.411
  15. NEWS1. 2020. https://www.news1.kr/articles/?4020630 (Accessed November 26, 20 20).
  16. Nichol, J.E., Shaker, A. and Wong, M.S. 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology. 76(1-2):68-75. https://doi.org/10.1016/j.geomorph.2005.10.001
  17. Rajyalakshmi, D., Raju, K.K. and Varma, G.S. 2016. Taxonomy of satellite image and validation using statistical inference, In 2016 IEEE 6th International Conference on Advanced Computing :352-361.
  18. Sato, H.P., Hasegawa, H., Fujiwara, S., Tobita, M., Koarai, M., Une, H. and Iwahashi, J. 2007. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides. 4(2):113-122. https://doi.org/10.1007/s10346-006-0069-5
  19. Won, M., Jang, K., Yoon, S. and Lee, H. 2019. Change detection of damaged area and burn severity due to heat damage from Gangwon large fire area in 2019. Korean Journal of Remote Sensing. 35(6-2):1083-1093. https://doi.org/10.7780/kjrs.2019.35.6.2.5
  20. Xiao, X., Zhang, J., Yan, H., Wu, W. and Biradar, B. 2009. Land Surface Phenology: Convergence of Satellite and CO2 Eddy Flux Observations. in Noormets, A. (ed.), Phenology of Ecosystem Processes. Springer, Berlin, Germany.
  21. YNA. 2020. https://www.yna.co.kr/view/AKR20201022059400054 (Accessed November 26, 2020).
  22. Yoon, H.S., Lee, D.H. and Suh, Y.C. 2009. Preparation of landslide hazard map using the analysis of historical data and GIS method. Journal of the Korean Association of Geographic Information Studies. 15(2):261-274.