• Title/Summary/Keyword: Infrared Thermal Imaging

Search Result 303, Processing Time 0.024 seconds

The Clinical Observation of Diagnostic value in Bell's palsy with Digital infrared Thermal Imaging (구안와사환자에서 D.I.T.I.의 진단적 가치에 대한 임상고찰)

  • Oh, Sang-Deog;Lim, Seung-Man;Baek, Eun-Tan;Kim, Young-Tae;Hong, Sae-Young;Ra, Su-Yeon;Shin, Hyoun-Su
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.573-578
    • /
    • 2001
  • Objective: This study was carried out to investigate the correlation between prognosis and differential temperature of Digital infrared Thermographic Imaging in Bell's palsy. Methods: The clinical data and thermographic images were analyzed on 50 cases of Bell's palsy who were treated ambulatory in Dong-so oriental hospital from October 2000 to May 2001 And 32case were selected who underwent thermographic imaging within 7days of onset. Results: There was no statistic significance between ${\Delta}T$ and the length of treatment, but the length of treatment tends to grow as ${\Delta}T$ increased. The length of treatment was shortest in normal thermal pattern, followed by hyperthermal and hypothermal. Conclusions: According to the results, there was a tendency that ${\Delta}T$ value is proportional to treatment days, although it is not significant statistically.

  • PDF

Changes of Facial Temperature and Blood Flow Rates by Treatment of Miso Facial Rejuvenation Acupuncture (미소안면침이 안면 피부 온도와 혈류량에 미치는 영향)

  • Kim, Tae Yeon;Bak, Jong Phil;Kim, Yong Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • To investigate the effects of facial temperature and blood flow rates generated by Miso Facial Rejuvenation Acupuncture treatment. Ten women in their twenties to fifties with no skin diseases were recruited. Miso Facial Rejuvenation Acupuncture(MFRA) was performed on the both sides of their face. We measured their facial temperature using Digital Infrared Thermal Imaging(DITI) and blood flow rates using Laser Doppler Perfusion Imaging(LDPI) at pre-treatment, immediately, twenty and sixty minutes after treatment. We analyzed data using student's t-test(p<0.05). After MFRA treatment, facial temperature on the measurement area increased immediately from $30.5{\pm}1.0^{\circ}C$ to $31.5{\pm}1.0^{\circ}C$, a statistically significant increase. Sixty minutes after treatment, facial temperature on the measurement area decreased a little bit($30.2{\pm}0.6^{\circ}C$), but there was no statistical significance. After MFRA treatment, facial blood flow rates on the measurement area increased immediately from $165.1{\pm}52.3$ PU to $342.7{\pm}51.3$ PU, a statistically significant increase. Sixty minutes after treatment, facial blood flow rates measurement area were recovered almost at the same level as before treatment. MFRA treatment could increase facial temperature and blood flow rates.

Changes in facial surface temperature of laying hens under different thermal conditions

  • Kim, Na Yeon;Kim, Seong Jin;Oh, Mirae;Jang, Se Young;Moon, Sang Ho
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1235-1242
    • /
    • 2021
  • Objective: The purpose of this study was to identify through infrared thermal imaging technology the facial surface temperature (FST) of laying hens in response to the variations in their thermal environment, and to identify the regional differences in FST to determine the most stable and reliable facial regions for monitoring of thermoregulatory status in chickens. Methods: Thirty Hy-Line Brown hens (25-week-old) were sequentially exposed to three different thermal conditions; optimal (OT, 22℃±2℃), low (LT, 10℃±4℃), and high temperature (HT, 30℃±2℃). The mean values of FST in five facial regions including around the eyes, earlobes, wattles, beak and nose, and comb were recorded through infrared thermography. The maximum FST (MFST) was also identified among the five face-selective regions, and its relationship with temperature-humidity index (THI) was established to identify the range of MFST in response to the variations in their thermal environment. Results: Hens exposed to OT condition at 15:00 displayed a higher temperature at wattles and around the eyes compared to other regions (p<0.001). However, under LT condition at 05:00 to 08:00, around the eyes surface temperature showed the highest value (p<0.01). In HT, wattles temperature tended to show the highest temperature over almost time intervals. Main distribution regions of MFST were wattles (63.3%) and around the eyes (16.7%) in OT, around the eyes (50%) in LT, and wattles (62.2%) and comb (18.3%) in HT. The regression equation between MFST and THI was estimated as MFST = 35.37+0.2383×THI (R2 = 0.44; p<0.001). Conclusion: The FST and the frequency of MFST in each facial region of laying hens responded sensitively to the variations in the thermal environment. The findings of this experiment provide useful information about the effect of the thermal conditions on the specific facial regions, thus offering an opportunity to stress and welfare assessment in poultry research and industry.

Standardization Study of Thermal Imaging using the Acupoints in Human Body (적외선 체열 영상의 표준화 연구 부위별 대표 혈위를 중심으로)

  • Choi, Young-Chon;Lim, Chung-San;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 2008
  • Objective: The purpose of this study was to invigorate the use of infrared thermal imaging apparatus as a diagnostic tool in Oriental medicine by providing standard temperature on specific acupoints. Methods: Subjects for the study was recruited through an advertisement in the school homepage(www.sangji.ac.kr) explaining the objectives and methods. 100 volunteers agreeing to terms were selected and measured the full body thermal image. Common acupoints used in the clinical surrounding were chosen and final 63 acupoints were selected for the measurement. Male/female and right/left readings were obtained for the analysis. Results: Following results were obtained from analyzing the body temperature of 50 male subjects and 50 female subjects 1. Subjects participating in the study ranged from 19 years of age to 44 years. Median male age at $26.86{\pm}6.02$ and female age at $22.88{\pm}2.74$, respectively. 2. For all acupoints, no significant differences were witnessed between the gender and right, left side of the body. 3. 10 acupoints from the facial region(18 bilateral), 8 acupoints from the chest/abdomen region(10 bilateral), 6 acupoints from the back region(11 bilateral), 17 acupoints from the upper extremity(34 bilateral), and 22 acupoints from the lower extremity(44 bilateral) were chosen. 4. In the facial region, BL2 showed the highest temperature and GV26 showed the lowest. 5. In the chest/abdomen region, CV22 showed the highest temperature and CV6 showed the lowest. 6. In the back region, GV14 showed the highest temperature and BL23 showed the lowest. 7. In the upper extremity region, jianqian(extra point) showed the highest temperature and baxie(extra point) showed the lowest. 8. In the lower extremity region, KI1 and bafeng(extra point) shoed the highest temperature and BL40 showed the lowest. Conclusions: Based on the standard body temperature measured on specific acupoints throughout the body, we hope these findings can trigger further studies on applications of infrared thermal imaging and clinical usage in the field of oriental medicine.

The Effectiveness of Infrared Thermography in Patients with Whiplash Injury

  • Lee, Young Seo;Paeng, Sung Hwa;Farhadi, Hooman F.;Lee, Won Hee;Kim, Sung Tae;Lee, Kun Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Objective : This study aims to visualize the subjective symptoms before and after the treatment of whiplash injury using infrared (IR) thermography. Methods : IR thermography was performed for 42 patients who were diagnosed with whiplash injury. There were 19 male and 23 female patients. The mean age was 43.12 years. Thermal differences (${\Delta}T$) in the neck and shoulder and changes in the thermal differences (${\Delta}dT$) before and after treatment were analyzed. Pain after injury was evaluated using visual analogue scale (VAS) before and after treatment (${\Delta}VAS$). The correlations between ${\Delta}dT$ and ${\Delta}VAS$ results before and after the treatment were examined. We used Digital Infrared Thermal Imaging equipment of Dorex company for IR thermography. Results : The skin temperature of the neck and shoulder immediately after injury showed $1-2^{\circ}C$ hyperthermia than normal. After two weeks, the skin temperature was normal range. ${\Delta}T$ after immediately injuy was higher than normal value, but it was gradually near the normal value after two weeks. ${\Delta}dT$ before and after treatment were statistically significant (p<0.05). VAS of the neck and shoulder significantly reduced after 2 week (p=0.001). Also, there was significant correlation between ${\Delta}dT$ and reduced ${\Delta}VAS$ (the neck; r=0.412, p<0.007) (the shoulder; r=0.648, p<0.000). Conclusion : The skin temperature of sites with whiplash injury is immediately hyperthermia and gradually decreased after two weeks, finally it got close to normal temperature. These were highly correlated with reduced VAS. IR thermography can be a reliable tool to visualize the symptoms of whiplash injury and the effectiveness of treatment in clinical settings.

Correlation Analysis between HIVD of L-spine MRI and Digital Infrared Thermal Image (DITI) on the Patients of LBP Who Visit Korean Medicine Hospital (한방병원에 요통, 하지방사통으로 내원한 환자 236명에서 MRI상 추간판 탈출증과 적외선 체열 검사(DITI)와의 연관성 분석)

  • Kim, Gil-Hwan;Kwon, Ok-Jun;Joo, Young-Kuk;Song, Seung-Bae;Kim, Doo-Ri;Choi, Young-Jun;Shin, Soo-Ji
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • Objectives This study is planned to classify correlation between HIVD of L-spine MRI and Digital Infrared Thermal Image (DITI). Methods We measured the temperature of both leg whose 120 men and 116 women patients with lumbar pain in Bucheon Jaseng Korean Medicine Hospital. And We use Magnetic Resonance Imaging (MRI) for classifying the patients who has lumbar intervertebral disc or not. Results 1) There was no statistical relation between difference of both leg's temperature and gender (p>0.05). 2) There was meaningful statistical relation between difference of both leg's temperature and age (p<0.05). 3) There was meaningful statistical relation between direction of HIVD of L-spine and direction of temperature reduction. 4) There was meaningful statistical relation between the severity of HIVD of L5/S1 and degree of temperature reduction. But there was no statistical relation between the severity of HIVD of L3/4, L4/5 and degree of temperature reduction. Conclusions We can use Digital Infrared thermal image (DITI) on low back pain patients for diagnosis. But we should not use DITI alone. DITI has limit in diagnosis.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Active Infrared Thermography for Visualizing Subsurface Micro Voids in an Epoxy Molding Compound

  • Yang, Jinyeol;Hwang, Soonkyu;Choi, Jaemook;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below $150{\mu}m{\sim}300{\mu}m$ from the inspection surface) micro voids ($150{\mu}m{\sim}300{\mu}m$ in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

Infrared Thermal Imaging in Patients with Medial Collateral Ligament Injury of the Knee - A Retrospective Study

  • Yang, HyunJung;Park, HaeIn;Lim, Chungsan;Park, SangKyun;Lee, KwangHo
    • Journal of Pharmacopuncture
    • /
    • v.17 no.4
    • /
    • pp.50-54
    • /
    • 2014
  • Objectives: Digital infrared thermographic imaging (DITI) has been used widely for various inflammatory diseases, circulatory diseases, skin diseases, musculoskeletal diseases and cancers. In cases of ligament injury, obviously the temperature of the damaged area increases due to local inflammation; however, whether the temperature also increases due to DITI has not been determined. The purpose of the present study was to identify whether or not the changes of temperature in patient's with medial collateral ligament injury were really due to infrared thermography and to determine the applicability of DITI for assessing ligament injuries. Methods: Twenty patient's who underwent DITI for a medial collateral ligament injury from September 2012 to June 2014 were included in the current study. The thermographic images from the patient's knees were divided to cover seven sub-areas: the middle of the patella, and the inferomedial, the inferolateral, the superomedial, the superolateral, the medial, and the lateral regions of patella. The temperatures of the seven regions were measured, and the temperature differences between affected and unaffected regions were analyzed by using the Wilcoxon signed rank test. Results: The 20 patient's were composed of 14 women (70%) and 6 men (30%), with a mean age of $62.15{\pm}15.71$ (mean${\pm}$standard deviation (SD)) years. The temperature of the affected side, which included the middle of the patella, and the inferomedial, the superomedial, the superolateral, and the medial regions, showed a significant increase compared to that of the unaffected side (P < 0.05). The inferolateral and the lateral regions showed no significant changes. Conclusion: Our study results suggest that DITI can show temperature changes if a patient has a ligament injury and that it can be applied in the evaluation of a medial collateral ligament injury.

Preliminary Results of Thermal Effects due to Mobile Phones

  • Sik, Yoo-Done
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.471-473
    • /
    • 2002
  • Public concerns associated with the electromagnetic field (EMF) exposures from mobile phones on human body are increased. Although studies on the effects of the EMF exposures on human have been carried out for a long time, it is not proved yet whether the EMF effect is harmful or not. Based on the scientific results by experts, EMF exposure limits have been regulated as a precautionary approach on the assumption that the EMF effect may be harmful. It is well known that absorbed EMF can be transformed into heat within biological tissues and that thermal effects are related with the specific absorption rate (SAR) distribution. However, the relative magnitude and distribution of the energies are not well defined. Although there is comprehensive information of the thermal effects, most of them come from animal and in vitro studies. Considerable efforts have been made to analyze the EMF absorption model while the actual temperature in the human body has been rarely measured. Temperature changes on the face of a healthy male volunteer were studied. A digital mobile phone of 1.8GHz was used. A digital infrared imaging system (IRIS-5000, Medicore, Seoul, Korea) was applied to take infrared pictures of the face every minute while the volunteer talked over the mobile phone for 20 minutes. The specification of the imaging system was as follows: Temperature resolution = 0.1$^{\circ}C$; Range of temperature measurement = 17~40$^{\circ}C$; Pixel size = 0.9mm ${\times}$ 0.9mm; Frame time = 2.6s; Active temperature of detector = 77$^{\circ}$K. The result showed that temperature of the ear region was increased during the phone call and the region of the temperature increase on the face was expanded as the phone call time increased. Further study is necessary to investigate the temperature rise analytically and quantitatively.

  • PDF