• 제목/요약/키워드: Infrared Optics

검색결과 220건 처리시간 0.028초

천체관측용 적외선 광학계 초정밀 가공 (ULTRA PRECISION MACHINING FOR ASTRONOMICAL INFRARED OPTICS)

  • 김건희;진호;양순철;김명상;국명호;이성호;육인수
    • 천문학논총
    • /
    • 제22권3호
    • /
    • pp.55-61
    • /
    • 2007
  • The KASINICS (Korea Astronomy and Space science Institute Near Infrared Camera System) is a ground-based near-infrared (NIR) imaging instrument. KASINICS has offner relay optics to reduce unwanted infrared light. For the offner optics, we adopted an ultra precision machining process which is installed at KBSI (Korea Basics Science research Institute). Since the offner relay optics is made of aluminum 6061 metal material, we did several tests to reach the specification. We found that a 0.497mm radius nose bite and 220m/min machining speed are best tool and condition to make this offner optics with the precision machine. In this paper, we report the technical method of ultra precision machining and results of the KASINICS offner optics.

Quantitative Measurement of Ethane Using Mid-infrared Cavity Ring-down Spectroscopy

  • Yonghee Kim;Byung Jae Chun;Lim Lee;Kwang-Hoon Ko;Seung-Kyu Park;Taek-Soo Kim;Hyunmin Park
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.457-462
    • /
    • 2023
  • Quantitative measurement of trace ethane is important in environmental science and biomedical applications. For these applications, we typically require a few tens of part-per-trillion level measurement sensitivity. To measure trace-level ethane, we constructed a cavity ring-down spectroscopy setup in the 3.37 ㎛ mid-infrared wavelength range, which is applicable to multi-species chemical analysis. We demonstrated that the detection limit of ethane is approximately 300 parts per trillion, and the measured concentration is in agreement with the amounts of the injected sample. We expect that these results can be applied to the chemical analysis of ethane and applications such as breath test equipment.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

나르시서스를 고려한 냉각형 적외선 광학계 설계 (Design of Cooled Infrared Optical System Considering Narcissus)

  • 정수성;김영수;홍진석;이경묵;윤지연
    • 한국광학회지
    • /
    • 제30권6호
    • /
    • pp.219-225
    • /
    • 2019
  • 냉각형 검출기를 사용하는 열상장비에서 렌즈의 표면 반사율에 의해 발생하는 나르시서스는 검출기의 불균일 보정(non-uniformity correction, NUC)에 의해 제거할 수 있다. 그래서 일반적으로 열상장비에서는 나르시서스를 무시할 수 있다고 가정한다. 그러나 불균일 보정은 시스템의 민감도를 감소시켜 열상장비의 성능인 최소분해능온도차에 영향을 줄 수 있다. 또한 시스템 내부의 온도가 변하면 불균일 보정 후에도 나르시서스에 의해 음영이 발생할 수 있다. 그래서 설계 단계에서 나르시서스를 고려한 설계가 필요하다. 본 논문에서는 중적외선 광학계를 설계하고 렌즈 표면 반사율을 1%로 설정하여 나르시서스 양을 분석하였다. 또한 설계를 초기설계, 개선설계, 최소화설계 단계로 구분하여 나르시서스 양을 초기 설계 대비 약 56% 수준으로 개선하였다.

칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치 (Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique)

  • 송세용;조재흥;홍성목;이회윤;이윤우
    • 한국광학회지
    • /
    • 제22권1호
    • /
    • pp.16-22
    • /
    • 2011
  • 중적외선 결상용 실리콘 렌즈의 변조전달함수(MTF)를 칼날 주사방식으로 측정하는 적외선 MTF 측정장치를 구성하였다. 이를 위하여 반달형 칼날 물체를 사용하여 초점거리 50 mm, F/4인 실리콘 렌즈에 대한 중적외선 파장대인 $3{\sim}5\;{\mu}m$에서의 축상 자오 방향에 대한 MTF를 측정하였다. 이 때 무한 물체를 만들기 위해서 초점거리가 2.545 m인 비축 포물 반사경을 사용하였다. 측정한 MTF는 렌즈의 설계 자료로부터 구한 MTF와 비교한 결과, 7 lp/mm 이하에서 2 % 이내의 MTF 허용오차를 만족하고 있음을 알 수 있었다.

Infrared 광학초자의 초정밀 가공 특성 (The Characteristics on Ultra Precision Machining for Infrared Optical Materials)

  • 양순철;허명상;김상혁;이길재;이상용;국명호;장기수;유선영;원종호;김건희
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.253-260
    • /
    • 2012
  • In nowadays, the infrared optics is frequently employed to various fields such as military, aerospace, industry and medical. To develop the infrared optics, special glasses which can transmit infrared wave are required. Ge(Germanium), Si(silicon), and fluoride glasses are typically used for material of the infrared optics. Compared with Ge and Si glasses, fluoride glasses have high transmittance in infrared wavelength range. Additionally, UV(ultraviolet) and visible light can be transmitted through fluoride glasses. There characteristics of fluoride glasses makes it possible to evaluate optical performance with generally used visible testing equipment. In this paper, we used design of experiment to find ultra precision machining characteristic of Ge and fluoride glasses and optimized machining process to obtain required form accuracy of PV(Peak to Valley) $0.2\;{\mu}m$.

태양전지 실리콘 웨이퍼를 위한 실험계획법 기반 근적외선 광학계의 최적조건 선정 (Optimal Parameter Selection of Near-Infrared Optics Based Design of Experiment for Silicon Wafer in Solar Cell)

  • 서형준;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.29-34
    • /
    • 2013
  • Solar cell has been considered as renewable green energy. Its silicon wafer thickness is thinner due to manufacturing cost and accordingly micro cracks is often generated in the process. Micro cracks result in bad quality of solar cell, and so their accurate and reliable detection is required. In this paper, near-infrared optics system is newly designed based on the analysis of near-infrared transmittance characteristics and its important parameters are optimally selected using the design of experiment for micro crack detection in solar cell wafer. The performance of the proposed method is verified using several experiments.

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

몰드성형용 GeSbSe계 칼코게나이드 유리 제작 및 특성 분석 (Fabrication and Evaluation of Chalcogenide Glass for Molding)

  • 박흥수;차두환;김혜정;김정호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.135-139
    • /
    • 2012
  • In this study, we synthesized the chalcogenide glass($Ge_{19}Sb_{23}Se_{58}$) for infrared optics by meltquenching method and verified the effect of cooling condition on the glass properties. The structural and optical properties of the glass were analyzed by XRD, FT-IR and SEM image. The glass synthesized under the cooling temperature of $980^{\circ}C$ shows transmittance of 58% at $8\sim12{\mu}m$, which was decreased as the cooling temperature was decreased. In addition, thermal and hardness also were measured. From the analysis results, we ascertained the feasibility as a molding materials for infrared optics.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.