• Title/Summary/Keyword: Infrared Microscope

Search Result 235, Processing Time 0.029 seconds

Thermal Resolution Analysis of Lock-in Infrared Microscope (위상잠금 열영상 현미경의 온도분해능 분석)

  • Kim, Ghiseok;Lee, Kye-Sung;Kim, Geon-Hee;Hur, Hwan;Kim, Dong-Ik;Chang, Ki Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, we analyzed and showed the enhanced thermal resolution of a lock-in infrared thermography system by employing a blackbody system and micro-register sample. The noise level or thermal resolution of an infrared camera system is usually expressed by a noise equivalent temperature difference (NETD), which is the mean square of the deviation of the different values measured for one pixel from its mean values obtained in successive measurements. However, for lock-in thermography, a more convenient quantity in the phase-independent temperature modulation amplitude can be acquired. On the basis of results, it was observed that the NETD or thermal resolution of the lock-in thermography system was significantly enhanced, which we consider to have been caused by the averaging and filtering effects of the lock-in technique.

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

Growth of LiF Single Crystal by Floating Zone Method (Floating Zone법에 의한 LiF 단결정 성장)

  • 오원석;신건철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.631-637
    • /
    • 1990
  • Lithium fluolide single crystals were grown by a floating zone method, with infrared radiation convergence type heater, which is free of contamination from the crucible wall. The crystals grown by this apparatus are 5cm in length and 5-6mm in diameter. The grown cryatal was examined by an optical microscope, XRD, Laue camera, Vickers hardness tester, and FTIR.

  • PDF

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

Wear Characteristics of Diamond-Like Carbon Thin Film for Durability Enhancement of Ultra-precision Systems (초정밀 시스템의 내구성 향상을 위한 다이아몬드상 탄소 박막의 마멸특성에 관한 연구)

  • 박관우;나종주;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • Diamond-Like Carbon (DLC) thin film is a semiconductor with high mechanical hardness, low friction coefficient, high chemical inertness, and optical transparency. DLC thin films have widespread applications as protective coatings and solid lubricant coatings in areas such as Hard Disk Drive (HDD) and Micro-Electro-Mechanical-Systems (MEMS). In this work, the wear characteristics of DLC thin films deposited on silicon substrates using a DC-magnetron sputtering system were analyzed. The wear tracks were measured with an Atomic Force Microscope (AFM). To identify the sp2 and sp3 hybridization of carbon bonds and other bonds Raman spectroscopy was used. The structural information of DLC thin films was obtained with Fourier transform infrared spectroscopy and wear tests were conducted by using a micro-pin-on-reciprocator tester. Results showed that the wear characteristics were dependent on the sputtering conditions. The wear rate could be correlated with the bonding state of the DLC thin film.

  • PDF

Optical Properties of DLC-coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 DLC 코팅된 ZnS 기판의 광학 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Kim, Chang-Il;Nahm, Sahn;Kwon, Min-Chul;Chu, Byoung-Uck;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.101-105
    • /
    • 2019
  • ZnS substrates with excellent transmittance in the mid-infrared region ($3-5{\mu}m$) were prepared using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon(DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance. More specifically DLC was coated using CVD with an Ar and $C_2H_2$ mixed gas, and Ge was used as the bonding layer. During CVD, the bias voltage was fixed to 500 V and analyzed by Fourier transform infrared spectroscopy (FT-IR), nanoindenter, scanning electron microscope and energy dispersive spectrometry. Results of hardness analysis using the nanoindenter, showed that DLC coating increased from 5.9 to 17.7 GPa after deposition. The FT-IR spectroscopy results showed that, in the mid-infrared region ($3-5{\mu}m$), the average transmittance of the samples with DLC coating on one and both sides increased by approximately 6% and approximately 11.2% respectively. In conclusion, the DLC coating improved the durability and transmittance of the ZnS substrates.

Synthesis and Self-healing Properties of Waterborne Polyurethane Based on Polycarbonate and Polyether Polyol (폴리카보네이트계 및 폴리에테르계 폴리올 기반 자가치유 기능 수분산 폴리우레탄 합성과 특성)

  • Kwon, Seon-Young;Park, Soo-Yong;Paik, In Kyu;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2022
  • In this study, self-healable waterborne polyurethane (SH-WPU) as shoes and coating materials with self-healable disulfide functionalities was synthesized by mixing polyether polyol to impart excellent durability and heat resistance and polycarbonate polyol to impart excellent mechanical properties. The synthesized SH-WPU was characterized by fourier transform-infrared spectroscopy (FT-IR), and physical and self-healing properties were confirmed through universal testing machine (UTM) and scanning electron microscope (SEM) measurements. Tensile strength and hardness were increased and elongation was decreased by using polycarbonate polyol. In addition, as a result of comparison of thermal properties, thermal stability has been increased as the content of polycarbonate polyol increased. The healing efficiency showed the highest efficiency when poly(tetramethylene ether)glycol : polycarbonate polyol = 0.75 : 0.25, and it was confirmed that the damaged part was healed through surface observation using a microscope and SEM.

Dispersion of nanodiamond by Chemical treatment (나노다이아몬드의 화학적 처리에 따른 분산 특성)

  • Park, Jong-Soon;Kim, Hong;Kang, Soon-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.999-1004
    • /
    • 2011
  • In this study, nanodiamod's surface have formed carboxyl, hydroxyl, amine radical for the purpose of use of nanodiamond synthesized by detonation, and then it has widely stable dispersion and slowly sedimentation in solvent. Thus nanodiamonds obtained by chemical treatment were used to analyze the structure, surface statement, particle size and sedimentation specification in solvent for method X-ray diffration(XRD), scanning electron microscope energy diffraction spectroscopy(SEM-EDS), Fourier transform infrared spectroscopy (FTIR), automic force microscope(AFM).

Synthesis of LiFePO4 nano-fibers for cathode materials by electrospinning process

  • Kang, Chung-Soo;Kim, Cheong;Son, Jong-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.304-307
    • /
    • 2012
  • Nano-fibers of LiFePO4 were synthesized from a metal oxide precursor by adopting electrospinning method. After calcination of the above precursor nano-fibers at 800 ℃, LiFePO4 nano-fibers with a diameter of 300 ~ 800 nm, were successfully obtained. Measurement were performed using X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), videoscope, scanning electron microscope (SEM) and atomic force microscope (AFM), respectively, were performed to characterize the properties of the as-prepared materials. The results showed that the crystalline phase and morphology of the fibers were largely influenced the starting materials and electrospinning conditions.

Scientific Studies on Ancient Silk Fibers Used for Textiles Excavated at Archaeological Sites in Japan, Using Microscopic Fourier Transform Infrared Spectroscopy

  • SATO, Masanori
    • Journal of Conservation Science
    • /
    • v.5 no.2 s.6
    • /
    • pp.45-50
    • /
    • 1996
  • Silk fibers excavated at Fujinoki mounted tomb, Shimoikeyana mounted tomb and Kuriyama site were examined using FT-IR microscope and two peaks called amide I and II present in modern silk fibers were compared with those of excavated fibers. It was found that amide ground in a polymer molecule decreased with the progress of degradation and peak intensity of amide group in infrared spectrum decreased correspondingly. The advantages of FT-IR microscopy for the analysis of organic remains in archaeological view point were evaluated and it was concluded that the systematic investigation of spectral change due to the degradation of respective material is essential.

  • PDF