• 제목/요약/키워드: Information searching & coding

검색결과 73건 처리시간 0.022초

다 해상도 프레임 구조에 기반한 고속 움직임 추정 기법 (A Fast Motion Estimation Algorithm Based on Multi-Resolution Frame Structure)

  • 송병철;나종범
    • 대한전자공학회논문지SP
    • /
    • 제37권5호
    • /
    • pp.54-63
    • /
    • 2000
  • 고속 움직임 추정을 위한 다 해상도 블록 정합 기법을 제안한다 최저 해상도 계층에서 전역 탐색을 통해 최소 정함 오치를 갖는 움직임 벡터를 선택하고, 공간적으로 인접한 블록들의 움직임 벡터들 중에서 최소 정합 오차를 갖는 움직임 벡터를 찾는다 이 때, 주변 움직임 벡터들의 보다 정확한 탐색을 위해 저 해상도 계층에서도 움직임 벡터의 양자화 없이 탐색을 할 수 있는 효과적인 방법을 제안한다. 이렇게 얻어진 2개의 움직임 벡터들은 중간 해상도 계층에서의 탐색을 위한 초기 탐색 중심점들로 사용된다 중간 계층에서, 각 초기점을 중심으로 훨씬 좁아진 영역에서의 지역 탐색을 수행한다. 최저 해상도 계층에서 주변 움직임 벡터 탐색을 위해 사용했던 방법을 이용하면, 각 지역 탐색을 정수 화소 단위로 수행할 수 있다 지역 탐색 영역 내에서 최소 정함 오차를 갖는 움직임 벡터를 찾고, 이 벡터를 중심으로 마지막 계층에서의 마지막 탐색을 수행한다 그러나, 중간 해상도 계층에서 이미 정수 화소 단위의 정확한 움직임 벡터 추정을 수행했기 때문에, 마지막 최고 해상도 계층에서의 지역 탐색은 전체 성능에 미미한 영향을 주게 된다. 따라서 최고 해상도 계층에서의 탐색을 생략하더라도 성능 저하 없이 탐색 속도를 향상시킬 수 있다 모의 실험을 통해 최고 계층에서의 지역 탐색을 생략하더라도 제안한 블록 정합 기법이 전역 탐색 기법에 비해 보편적인 MPEG2 부호화 환경 하에서 최대 02dB의 PSNR 저하만을 보이며, 200배 이상의 계산 속도를 가점을 보인다 또한, 제안한 기법은 규칙적인 데이터 흐름을 가지am로 하드웨어 구현에도 적합하다.

  • PDF

Remote Intent를 이용한 안드로이드 장치 간 비동기식 메시지 푸싱 프레임워크 (Asynchronous Message Pushing Framework between Android Devices using Remote Intent)

  • 백지훈;남용우;박상원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.517-526
    • /
    • 2013
  • 안드로이드 장치용으로 모바일 애플리케이션을 개발할 때 안드로이드의 인텐트(intent)는 안드로이드 장치에서 애플리케이션 내부와 애플리케이션 간의 메시지 전달 메커니즘으로 사용된다. 그러나 안드로이드의 인텐트는 서로 다른 안드로이드 장치 간의 인텐트를 이용한 메시지 전송은 지원되지 않고 있다. 만약 서로 다른 안드로이드 장치 간에 인텐트를 전송하는 기능이 지원된다면 좀 더 다양한 애플리케이션 구현을 쉽게 할 수 있다. 서로 다른 안드로이드 장치 간에 메시지 전송을 할 때 Socket을 이용하여 메시지를 전송 할 수는 있지만, 항상 연결을 유지하여야 한다는 단점이 있다. 따라서 본 논문에서는 서로 다른 안드로이드 장치 간의 메시지 전송을 위한 BRIF(Broadcasting Remote Intent FrameWork) 프레임워크를 제안한다. BRIF 프레임워크는 구글의 C2DM 서비스를 이용하여 서로 다른 안드로이드 장치 간의 메시지 전송을 비동기적으로 푸쉬하는 기능을 서비스하는 프레임워크다. 이것은 기존의 로컬 기기내에서 인텐트를 사용하는 것과 동일한 방법으로 원격지에 사용자 정의 인텐트를 보내는 코드를 쉽게 작성할 수 있다.

텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구 (A Study of 'Emotion Trigger' by Text Mining Techniques)

  • 안주영;배정환;한남기;송민
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.69-92
    • /
    • 2015
  • 최근 소셜 미디어의 사용이 폭발적으로 증가함에 따라 이용자가 직접 생성하는 방대한 데이터를 분석하기 위한 다양한 텍스트 마이닝(text mining) 기법들에 대한 연구가 활발히 이루어지고 있다. 이에 따라 텍스트 분석을 위한 알고리듬(algorithm)의 정확도와 수준 역시 높아지고 있으나, 특히 감성 분석(sentimental analysis)의 영역에서 언어의 문법적 요소만을 적용하는데 그쳐 화용론적 의미론적 요소를 고려하지 못한다는 한계를 지닌다. 본 연구는 이러한 한계를 보완하기 위해 기존의 알고리듬 보다 의미 자질을 폭 넓게 고려할 수 있는 Word2Vec 기법을 적용하였다. 또한 한국어 품사 중 형용사를 감정을 표현하는 '감정어휘'로 분류하고, Word2Vec 모델을 통해 추출된 감정어휘의 연관어 중 명사를 해당 감정을 유발하는 요인이라고 정의하여 이 전체 과정을 'Emotion Trigger'라 명명하였다. 본 연구는 사례 연구(case study)로 사회적 이슈가 된 세 직업군(교수, 검사, 의사)의 특정 사건들을 연구 대상으로 선정하고, 이 사건들에 대한 대중들의 인식에 대해 분석하고자 한다. 특정 사건들에 대한 일반 여론과 직접적으로 표출된 개인 의견 모두를 고려하기 위하여 뉴스(news), 블로그(blog), 트위터(twitter)를 데이터 수집 대상으로 선정하였고, 수집된 데이터는 유의미한 연구 결과를 보여줄 수 있을 정도로 그 규모가 크며, 추후 다양한 연구가 가능한 시계열(time series) 데이터이다. 본 연구의 의의는 키워드(keyword)간의 관계를 밝힘에 있어, 기존 감성 분석의 한계를 극복하기 위해 Word2Vec 기법을 적용하여 의미론적 요소를 결합했다는 점이다. 그 과정에서 감정을 유발하는 Emotion Trigger를 찾아낼 수 있었으며, 이는 사회적 이슈에 대한 일반 대중의 반응을 파악하고, 그 원인을 찾아 사회적 문제를 해결하는데 도움이 될 수 있을 것이다.