• Title/Summary/Keyword: Information operations

Search Result 4,612, Processing Time 0.031 seconds

A Study on the Next-Generation Coastal Guard System (차세대 해안경계시스템에 관한 연구)

  • Lee, Jang-Il;Shin, Eui-Soo;Cha, Ji-Eun
    • Maritime Security
    • /
    • v.4 no.1
    • /
    • pp.115-138
    • /
    • 2022
  • The Korean military is preparing for successful manpower reduction using advanced science and technology, in addition to carrying out the initiative of the Defense Innovation 4.0. Accordingly, studies on core technologies related to defense reform have been conducted both internally and externally in the military, and the corresponding results have also been applied. Nevertheless, compared to the development of such technologies, it is considered necessary to have more preparation for the policies related to the operation of the newly introduced equipment. As for the placement of personnel and the organization of time in service (TIS) with respect to the operation of surveillance equipment, there has been a tendency to sustain the conventional practice. Therefore, this study intends to suggest the schemes for facilitating policy improvements in the operation of manpower and security regulations in the field of information for the purpose of introducing a successful next-generation coastal guard system. To do this, the approach of this study was focused on the policies for the operation of the guard system. This is in contrast to previous studies that centered on its equipment and technologies. In addition, how to efficiently operate the guard system was also studied in view of cognitive science by deriving the most efficient time for a person to execute surveillance through the monitor based on the previous studies.

  • PDF

A Simulation Study for Improving Operations of an Emergency Medical Center (응급진료센터 운영 개선을 위한 시뮬레이션)

  • Mo, Chang-Woo;Choi, Seong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.35-45
    • /
    • 2009
  • Emergency medical center(EMC) is the place for patients who need medical treatment immediately due to a disease, childbirth, or all sorts of accidents. Currently, most of EMCs use temporary beds because regular EMC beds cannot afford to serve all incoming patients. However, since it decreases the quality of service(QoS) of EMC patients and their guardians and efficiency of the EMC, some improvements are highly required to diminish the usage of temporary beds. The system duration time is one of the typical QoSs. This thesis proposes the information which is critical to make a better decision for cut down the number of temporary beds without sacrificing QoS of patients. The key point is to control the duration time of medical treatments for the consultation and hospitalization process, since it is the major reason of overcrowding in EMC and the usage of temporary beds. In this paper, we proposed an Arena simulation model reflecting real world substantially. Arena is one of the most widely accepted simulation softwares in the world. Using the developed model, we can obtain the optimal EMC operation parameters through simulation experiments. Optquest, included in the Arena, is used to make the developed simulation model collaborate with an optimization model. The results showed one can determine the set of optimal operation parameters decreasing the required number of temporary beds without deteriorating EMC patient's QoS.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Log Collection Method for Efficient Management of Systems using Heterogeneous Network Devices (이기종 네트워크 장치를 사용하는 시스템의 효율적인 관리를 위한 로그 수집 방법)

  • Jea-Ho Yang;Younggon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.119-125
    • /
    • 2023
  • IT infrastructure operation has advanced, and the methods for managing systems have become widely adopted. Recently, research has focused on improving system management using Syslog. However, utilizing log data collected through these methods presents challenges, as logs are extracted in various formats that require expert analysis. This paper proposes a system that utilizes edge computing to distribute the collection of Syslog data and preprocesses duplicate data before storing it in a central database. Additionally, the system constructs a data dictionary to classify and count data in real-time, with restrictions on transmitting registered data to the central database. This approach ensures the maintenance of predefined patterns in the data dictionary, controls duplicate data and temporal duplicates, and enables the storage of refined data in the central database, thereby securing fundamental data for big data analysis. The proposed algorithms and procedures are demonstrated through simulations and examples. Real syslog data, including extracted examples, is used to accurately extract necessary information from log data and verify the successful execution of the classification and storage processes. This system can serve as an efficient solution for collecting and managing log data in edge environments, offering potential benefits in terms of technology diffusion.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

Development of Certification Model of Robot-Friendly Environment for Apartment Complexes (아파트 단지의 로봇 친화형 환경 인증 모델 개발)

  • Jung, Minseung;Jang, Seolhwa;Gu, Hanmin;Yoon, Dongkeun;Kim, Kabsung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.83-105
    • /
    • 2023
  • A robot-friendly building certification system was established in 2022 to accommodate the growing number of service robots introduced into buildings. However, this system primarily targeted office buildings, with limitations in applying other functional architectures. To address this problem, we developed a certification model of a robot-friendly environment to extend the existing system to apartment complexes. Using focus group interviews and the analytic hierarchy process, we established 28 evaluating items categorized as (a) architecture and facility design, (b) networks and systems, (c) building operations management, and (d) support for robot activity and other services. These indicators were weighted based on their relative importance within and between categories, resulting in scores ranging from 1 to 18 points and a total of 176 points. According to evaluations with the 28 items, each apartment complex could be graded as "best," "excellent," or "general" based on its total achieved scores. This study is significant, as we present the world's first certification model of a robot-friendly environment for apartment complexes that considers human-robot interactions

Development of Task Planning System for Intelligent Excavating System Applying Heuristics (휴리스틱스(Heuristics)를 활용한 지능형 굴삭 시스템의 Task Planning System 개발)

  • Lee, Seung-Soo;Kim, Jeong-Hwan;Kang, Sang-Hyeok;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.859-869
    • /
    • 2008
  • These days, almost every industry's production line has become automatic and this phenomenon brought a lot of benefits such as increase in productivity and economical effect, assurance in industrial safety, better quality and compatibility. However, unlike industrial production line, in construction industry, automation has number of barriers like uncertainty incidents and intellectual judgment to make ability to make solution out of it. Therefore construction industry is still demanding use of construction machine through labor. Due to this matter operational labor in construction industry is aging and fading. To solve these problem, in developed nations like Europe, US or Japan are keep researching for the automation in construction and road pavement, strengthening and some other simple operations have been worked through automation but in civil engineering site, automation research is still low despite of its importance in constructional site. For automating civil engineering operation, effective operational plan have to be set by analyzing ground information acquainted. If skillful worker apply heuristics, trial & error can be reduced with increased safety and the effective work plan can be established. Hence, this research will introduce Intellectual Task Planning System for Intelligent Excavating System's effective work plan and heuristics applied in each steps.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

Comparison of Operational Efficiency and Quality Efficiency of Medical Services by Country : Focused on OECD Member Countries (국가별 의료서비스의 운영효율성과 품질효율성 비교: OECD 회원국들을 중심으로)

  • Hyunjung Kim;Jiyoon Son
    • Journal of Service Research and Studies
    • /
    • v.11 no.4
    • /
    • pp.43-55
    • /
    • 2021
  • This study analyzed the efficiency of medical services in OECD member countries by dividing it into operational efficiency and quality efficiency. For this purpose, data from 2017-2019 OECD Health Statistics were used. As the analysis method, super efficiency was measured by applying an output-oriented Variable Returns to Scale (VRS) model. As a result of the analysis, Switzerland, Korea, and Italy were included in the high group of operational efficiency, Canada, Greece, Denmark, etc. in the medium group, and Belgium, Germany, and Spain in the low group. Based on quality efficiency, Norway, Switzerland, and Spain are in the high group, and Greece, Denmark, Mexico, etc. are in the medium group, and the Netherlands, Germany, Belgium, etc. were included in the low group. As a result of comparative analysis of efficiency by OECD member countries as of 2018, it was found that Korea's operational efficiency was the most efficient and quality efficiency was inefficient. Korea (0.998) should improve life expectancy by 0.2 (0.2%) and subjective health perception by 44.2 (138.1%) by benchmarking Greece (0.422), Switzerland (0.207), and Spain (0.371) to improve quality efficiency. Unlike most previous studies that focused on operational efficiency, this study measured quality efficiency together and analyzed the efficiency of the medical service industry in each OECD member country. Through this, this study has implications in that it confirmed the international competitiveness of the domestic medical service industry and suggested ways to improve efficiency.