• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.037 seconds

Multi-Resolution Modeling Technique Using Mesh Segmentation

  • Kim, Dong-Hwan;Yun, Il-dong;Lee, Sang-Uk
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.474-477
    • /
    • 2000
  • This paper presents an algorithm for simplification of 3D triangular mesh data, based on mesh simplification. The proposed algorithm is first attempt to segment the entire mesh into several parts using the orientation of triangles. Then simplification algorithm is applied to each segment that has similar geometric property. The proposed two step multi-resolution modeling scheme would yield better performance then conventional algorithm like edge collapse technique, since the segmentation step can give global information on the input shape. The experimental results show that the proposed algorithm is performed efficiently.

  • PDF

An Eedge-Based Adaptive Morphology Algorithm for Image Nosie Reduction (에지 정보를 이용한 잡음 제겅용 적응적 수리 형태론 알고리즘)

  • 김상희;문영식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.84-96
    • /
    • 1997
  • In this paper an efficient morphologica algorithm for reducing gaussian and impulse noise in gray-scale image is presented. Based on the edge information the input image is partitioned into a flat region and an edge region, then different algorithms are selectively applied to each region. in case of impulse noise, MGR (morphologica grayscale reconstruction) algorithm with directional SE (structuring element) is applied to the flat region. For theedge region opening-closing (closing-opening) is used instead of dialation (erosion), so that the remaining noise around large objects can be removed. In case of gaussian noise, 5*5 OCCO(opening closing closing opening) and 3*3 DMF(directional morphological filter ) are used for the flat region and the edgeregion, respectively. In order to remove discontinuity at the edge boundary, the algorithm uses 3*3 OCCO around the edge region to reconstruct the final image. Experimetnal results have shown that the proposed algorithm achieves a high performance in terms of noise removal, detail preservation, and NMSE.

  • PDF

Performance Evaluation of Lower Complexity Hybrid-Fix-and-Round-LLL Algorithm for MIMO System

  • Lv, Huazhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2554-2580
    • /
    • 2018
  • Lenstra-Lenstra-$Lov{\acute{a}}sz$ (LLL) is an effective receiving algorithm for Multiple-Input-Multiple-Output (MIMO) systems, which is believed can achieve full diversity in MIMO detection of fading channels. However, the LLL algorithm features polynomial complexity and shows poor performance in terms of convergence. The reduction of algorithmic complexity and the acceleration of convergence are key problems in optimizing the LLL algorithm. In this paper, a variant of the LLL algorithm, the Hybrid-Fix-and-Round LLL algorithm, which combines both fix and round measurements in the size reduction procedure, is proposed. By utilizing fix operation, the algorithmic procedure is altered and the size reduction procedure is skipped by the hybrid algorithm with significantly higher probability. As a consequence, the simulation results reveal that the Hybrid-Fix-and-Round-LLL algorithm carries a faster rate of convergence compared to the original LLL algorithm, and its algorithmic complexity is at most one order lower than original LLL algorithm in real field. Comparing to other families of LLL algorithm, Hybrid-Fix-and-Round-LLL algorithm can make a better compromise in performance and algorithmic complexity.

Individual Variable Step-Size Subband Affine Projection Algorithm (독립 가변 스텝사이즈 부밴드 인접투사 알고리즘)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.443-448
    • /
    • 2022
  • This paper presents a subband affine projection algorithm with variable step size to improve convergence performance in adaptive filtering applications with long adaptive filters and highly correlated input signals. The proposed algorithm can obtain fast convergence speed and small steady-state error by using different step sizes for each adaptive sub-filter in the subband structure to which polyphase decomposition and noble identity are applied. The step size derived to minimize the mean square error of the adaptive filter at each update time shows better convergence performance than the existing algorithm using a variable step size. In order to confirm the convergence performance of the proposed algorithm, which is superior to the existing algorithm, computer simulations are performed for mean square deviation(MSD) for AR(1) and AR(2) colored input signals considering the system identification model.

An Advanced Phase Angle Measurement Algorithm And Error Analysis (개선된 위상 측정 알고리즘과 오차 해석)

  • 송영석;김재철;최인규;박종식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.25-32
    • /
    • 2004
  • An advanced algorithm for measurement of phase angle between two sinusoidal signals is proposed in this paper. This algorithm uses discrete sample data of two input signals for calculation of phase angle and amplitude. And the key parameters of the measurement algorithm are described by analytical express, so the calculation of phase angle is simplified. In this paper it is proved that harmonic distortion of the input sinusoidal signals does not affect the measurement value of phase angle by using the proposed algorithm when a whole cycle is sampled. And measurement error by the white Gaussian noise is very small compared by other algorithms.

Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application (퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, we propose the fuzzy neural networks based on fuzzy c-means clustering algorithm. Typically, the generation of fuzzy rules have the problem that the number of fuzzy rules exponentially increases when the dimension increases. To solve this problem, the fuzzy rules of the proposed networks are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the learning of fuzzy neural networks is realized by adjusting connections of the neurons, and it follows a back-propagation algorithm. The proposed networks are evaluated through the application to nonlinear process.

Security Algorithm for Vehicle Type Recognition (에지영상의 비율을 이용한 차종 인식 보안 알고리즘)

  • Rhee, Eugene
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • In this paper, a new security algorithm to recognize the type of the vehicle with the vehicle image as a input image is suggested. The vehicle recognition security algorithm is composed of five core parts, such as the input image, background removal, edge areas extraction, pre-processing(binarization), and the vehicle recognition. Therefore, the final recognition rate of the security algorithm for vehicle type recognition can be affected by the function and efficiency of each step. After inputting image into a gray scale image and removing backgrounds, the binarization is performed by extracting only the edge region. After the pre-treatment process for making outlines clear, the type of vehicles is categorized into large vehicles, passenger cars and motorcycles through the ratio of height and width of the vehicle.

Efficient Swimmer Detection Algorithm using CNN-based SVM

  • Hong, Dasol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.79-85
    • /
    • 2017
  • In this paper, we propose a CNN-based swimmer detection algorithm. Every year, water safety accidents have been occurred frequently, and accordingly, intelligent video surveillance systems are being developed to prevent accidents. Intelligent video surveillance system is a real-time system that detects objects which users want to do. It classifies or detects objects in real-time using algorithms such as GMM (Gaussian Mixture Model), HOG (Histogram of Oriented Gradients), and SVM (Support Vector Machine). However, HOG has a problem that it cannot accurately detect the swimmer in a complex and dynamic environment such as a beach. In other words, there are many false positives that detect swimmers as waves and false negatives that detect waves as swimmers. To solve this problem, in this paper, we propose a swimmer detection algorithm using CNN (Convolutional Neural Network), specialized for small object sizes, in order to detect dynamic objects and swimmers more accurately and efficiently in complex environment. The proposed CNN sets the size of the input image and the size of the filter used in the convolution operation according to the size of objects. In addition, the aspect ratio of the input is adjusted according to the ratio of detected objects. As a result, experimental results show that the proposed CNN-based swimmer detection method performs better than conventional techniques.

A Clustering Algorithm using Self-Organizing Feature Maps (자기 조직화 신경망을 이용한 클러스터링 알고리듬)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

Performance Analysis of Adaptive Bitloading Algorithm in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 적응비트로딩 알고리즘의 성능평가)

  • Lee Min-Hyouck;Byon Kuk-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.752-757
    • /
    • 2006
  • In the case of the requirement of high speed transmission, OFDM is a powerful technique employed in communications systems suffering from frequency selective fading. In this paper, we apply an optimal adaptive bitloading algorithm technique. The BER performance of the fixed-rate SISO and adaptive SISO is simulated. Specially, we can decompose the MIMO channel into the SISO channel by making use of the singular value decomposition(SVD) assuming channel knowledge in a multipath environment. As a results of simulation, we confirmed that the BER enhancement of MIMO-OFDM system with the bitloadins algorithm was superior to the SISO-OFDM system.