• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.025 seconds

Color Transient Improvement Algorithm Based on Image Fusion Technique (영상 융합 기술을 이용한 색 번짐 개선 방법)

  • Chang, Joon-Young;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.50-58
    • /
    • 2008
  • In this paper, we propose a color transient improvement (CTI) algorithm based on image fusion to improve the color transient in the television(TV) receiver or in the MPEG decoder. Video image signals are composed of one luminance and two chrominance components, and the chrominance signals have been more band-limited than the luminance signals since the human eyes usually cannot perceive changes in chrominance over small areas. However, nowadays, as the advanced media like high-definition TV(HDTV) is developed, the blurring of color is perceived visually and affects the image quality. The proposed CTI method improves the transient of chrominance signals by exploiting the high-frequency information of the luminance signal. The high-frequency component extracted from the luminance signal is modified by spatially adaptive weights and added to the input chrominance signals. The spatially adaptive weight is estimated to minimize the ${\iota}_2-norm$ of the error between the original and the estimated chrominance signals in a local window. Experimental results with various test images show that the proposed algorithm produces steep and natural color edge transition and the proposed method outperforms conventional algorithms in terms of both visual and numerical criteria.

Image Distortion Compensation for Improved Gait Recognition (보행 인식 시스템 성능 개선을 위한 영상 왜곡 보정 기법)

  • Jeon, Ji-Hye;Kim, Dae-Hee;Yang, Yoon-Gi;Paik, Joon-Ki;Lee, Chang-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.97-107
    • /
    • 2009
  • In image-based gait recognition systems, physical factors, such as the camera angle and the lens distortion, and environmental factors such as illumination determines the performance of recognition. In this paper we present a robust gait recognition method by compensating various types of image distortions. The proposed method is compared with existing gait recognition algorithm with consideration of both physical and environmental distortion factors in the input image. More specifically, we first present an efficient compensation algorithm of image distortion by using the projective transform, and test the feasibility of the proposed algorithm by comparing the recognition performances with and without the compensation process. Proposed method gives universal gait data which is invariant to both distance and environment. Gained data improved gait recognition rate about 41.5% in indoor image and about 55.5% in outdoor image. Proposed method can be used effectively in database(DB) construction, searching and tracking of specific objects.

Digital Modulation Types Recognition using HOS and WT in Multipath Fading Environments (다중경로 페이딩 환경에서 HOS와 WT을 이용한 디지털 변조형태 인식)

  • Park, Cheol-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.102-109
    • /
    • 2008
  • In this paper, the robust hybrid modulation type classifier which use both HOS and WT key features and can recognize 10 digitally modulated signals without a priori information in multipath fading channel conditions is proposed. The proposed classifier developed using data taken field measurements in various propagation model (i,e., rural area, small town and urban area) for real world scenarios. The 9 channel data are used for supervised training and the 6 channel data are used for testing among total 15 channel data(i.e., holdout-like method). The Proposed classifier is based on HOS key features because they are relatively robust to signal distortion in AWGN and multipath environments, and combined WT key features for classifying MQAM(M=16, 64, 256) signals which are difficult to classify without equalization scheme such as AMA(Alphabet Matched Algorithm) or MMA(Multi-modulus Algorithm. To investigate the performance of proposed classifier, these selected key features are applied in SVM(Support Vector Machine) which is known to having good capability of classifying because of mapping input space to hyperspace for margin maximization. The Pcc(Probability of correct classification) of the proposed classifier shows higher than those of classifiers using only HOS or WT key features in both training channels and testing channels. Especially, the Pccs of MQAM 3re almost perfect in various SNR levels.

The Noise Robust Algorithm to Detect the Starting Point of Music for Content Based Music Retrieval System (노이즈에 강인한 음악 시작점 검출 알고리즘)

  • Kim, Jung-Soo;Sung, Bo-Kyung;Koo, Kwang-Hyo;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.95-104
    • /
    • 2009
  • This paper proposes the noise robust algorithm to detect the starting point of music. Detection of starting point of music is necessary to solve computational-waste problem and retrieval-comparison problem with inconsistent input data in music content based retrieval system. In particular, such detection is even more necessary in time sequential retrieval method that compares data in the sequential order of time in contents based music retrieval system. Whereas it has the long point that the retrieval is fast since it executes simple comparison in the order of time, time sequential retrieval method has the short point that data starting time to be compared should be the same. However, digitalized music cannot guarantee the equity of starting time by bit rate conversion. Therefore, this paper ensured that recognition rate shall not decrease even while executing high speed retrieval by applying time sequential retrieval method through detection of music starting point in the pre-processing stage of retrieval. Starting point detection used minimum wave model that can detect effective sound, and for strength against noise, the noises existing in mute sound were swapped. The proposed algorithm was confirmed to produce about 38% more excellent performance than the results to which starting point detection was not applied, and was verified for the strength against noise.

A Study on Development of Patent Information Retrieval Using Textmining (텍스트 마이닝을 이용한 특허정보검색 개발에 관한 연구)

  • Go, Gwang-Su;Jung, Won-Kyo;Shin, Young-Geun;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3677-3688
    • /
    • 2011
  • The patent information retrieval system can serve a variety of purposes. In general, the patent information is retrieved using limited key words. To identify earlier technology and priority rights repeated effort is needed. This study proposes a method of content-based retrieval using text mining. Using the proposed algorithm, each of the documents is invested with characteristic value. The characteristic values are used to compare similarities between query documents and database documents. Text analysis is composed of 3 steps: stop-word, keyword analysis and weighted value calculation. In the test results, the general retrieval and the proposed algorithm were compared by using accuracy measurements. As the study arranges the result documents as similarities of the query documents, the surfer can improve the efficiency by reviewing the similar documents first. Also because of being able to input the full-text of patent documents, the users unacquainted with surfing can use it easily and quickly. It can reduce the amount of displayed missing data through the use of content based retrieval instead of keyword based retrieval for extending the scope of the search.

Implementation of High-Throughput SHA-1 Hash Algorithm using Multiple Unfolding Technique (다중 언폴딩 기법을 이용한 SHA-1 해쉬 알고리즘 고속 구현)

  • Lee, Eun-Hee;Lee, Je-Hoon;Jang, Young-Jo;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • This paper proposes a new high speed SHA-1 architecture using multiple unfolding and pre-computation techniques. We unfolds iterative hash operations to 2 continuos hash stage and reschedules computation timing. Then, the part of critical path is computed at the previous hash operation round and the rest is performed in the present round. These techniques reduce 3 additions to 2 additions on the critical path. It makes the maximum clock frequency of 118 MHz which provides throughput rate of 5.9 Gbps. The proposed architecture shows 26% higher throughput with a 32% smaller hardware size compared to other counterparts. This paper also introduces a analytical model of multiple SHA-1 architecture at the system level that maps a large input data on SHA-1 block in parallel. The model gives us the required number of SHA-1 blocks for a large multimedia data processing that it helps to make decision hardware configuration. The hs fospeed SHA-1 is useful to generate a condensed message and may strengthen the security of mobile communication and internet service.

Animation Generation for Chinese Character Learning on Mobile Devices (모바일 한자 학습 애니메이션 생성)

  • Koo, Sang-Ok;Jang, Hyun-Gyu;Jung, Soon-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.894-906
    • /
    • 2006
  • There are many difficulties to develop a mobile contents due to many constraints on mobile environments. It is difficult to make a good mobile contents with only visual reduction of existing contents on wire Internet. Therefore, it is essential to devise the data representation and to develop the authoring tool to meet the needs of the mobile contents market. We suggest the compact mobile contents to learn Chinese characters and developed its authoring tool. The animation which our system produces is realistic as if someone writes letters with pen or brush. Moreover, our authoring tool makes a user generate a Chinese character animation easily and rapidly although she or he has not many knowledge in computer graphics, mobile programming or Chinese characters. The method to generate the stroke animation is following: We take basic character shape information represented with several contours from TTF(TrueType Font) and get the information for the stroke segmentation and stroke ordering from simple user input. And then, we decompose whole character shape into some strokes by using polygonal approximation technique. Next, the stroke animation for each stroke is automatically generated by the scan line algorithm ordered by the stroke direction. Finally, the ordered scan lines are compressed into some integers by reducing coordinate redundancy As a result, the stroke animation of our system is even smaller than GIF animation. Our method can be extended to rendering and animation of Hangul or general 2D shape based on vector graphics. We have the plan to find the method to automate the stroke segmentation and ordering without user input.

Synthesizing Faces of Animation Characters Using a 3D Model (3차원 모델을 사용한 애니메이션 캐릭터 얼굴의 합성)

  • Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.31-40
    • /
    • 2012
  • In this paper, we propose a method of synthesizing faces of a user and an animation character using a 3D face model. The suggested method first receives two orthogonal 2D face images and extracts major features of the face through the template snake. It then generates a user-customized 3D face model by adjusting a generalized face model using the extracted facial features and by mapping texture maps obtained from two input images to the 3D face model. Finally, it generates a user-customized animation character by synthesizing the generated 3D model to an animation character reflecting the position, size, facial expressions, and rotational information of the character. Experimental results show some results to verify the performance of the suggested algorithm. We expect that our method will be useful to various applications such as games and animation movies.

Lattice-Reduction-Aided Preceding Using Seysen's Algorithm for Multi-User MIMO Systems (다중 사용자 다중 입출력 시스템에서 Seysen 기법을 이용한 격자 감소 기반 전부호화 기법)

  • Song, Hyung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.86-93
    • /
    • 2009
  • We investigate lattice-reduction-aided precoding techniques for multi-user multiple-input multiple-output (MIMO) channels. When assuming full knowledge of the channel state information only at the transmitter, a vector perturbation (VP) is a promising precoding scheme that approaches sum capacity and has simple receiver. However, its encoding is nondeterministic polynomial time (NP)-hard problem. Vector perturbation using lattice reduction algorithms can remarkably reduce its encoding complexity. In this paper, we propose a vector perturbation scheme using Seysen's lattice reduction (VP-SLR) with simultaneously reducing primal basis and dual one. Simulation results show that the proposed VP-SLR has better bit error rate (BER) and larger capacity than vector perturbation with Lenstra-Lenstra-Lovasz lattice reduction (VP-LLL) in addition to less encoding complexity.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.