• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.036 seconds

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

On a Study of the Reduction of Bit Rate by the Preprocessing of PSOLA Coding Technique in the G. 723.1 Vocoder (PSOLA 전처리과정을 이용한 G.723.1 보코더의 전송률 감소에 관한 연구)

  • 장경아;조성현;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.401-404
    • /
    • 2002
  • In general, speech coding methods are classified into the following three categories: the waveform coding, the source coding and the hybrid coding. In this paper, First, the reference waveform is detected after searching the pitch period by NAMDF similarity and similarity between the reference waveform and the waveform each pitch period. It made a decision whether the waveform is compressed with the threshold of similarity. If the waveform is compressed only magnitude and pitch information is transmitted into the input of G.723.1 vocoder. Performing through the G.723.1 vocoder, the waveform is restored with the magnitude and pitch information by PSOLA synthesis method. The result of simulation with proposed algorithm has a 31% reduction of bit rate than the standard 5.3kbps G.723.1 ACELP vocoder.

  • PDF

Test Generation for Speed-Independent Asynchronous Circuits with Undetectable Faults Identification

  • Eunjung Oh;Lee, Dong-Ik;Park, Ho-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.359-362
    • /
    • 2000
  • In this paper, we propose a test pattern generation algorithm on the basis of the identification of undetectable faults for Speed-Independent(SI) asynchronous control circuits. The proposed methodology generates tests from the specification of a target circuit, which describes the behavior of the circuit in the form of Signal Transition Graph (STG). The proposed identification method uses only topological information of a target circuit and reachability information of a fault-free circuit, which is generated in the form of Binary Decision Diagram(BDD) during pre-processing. Experimental results show that high fault coverage over single input stuck-at fault model is obtained for several synthesized SI circuits and the use of the identification process as a preprocessing decreases execution time of the proposed test generation with negligible costs.

  • PDF

Blind Source Separation of Acoustic Signals Based on Multistage Independent Component Analysis

  • SARUWATARI Hiroshi;NISHIKAWA Tsuyoki;SHIKANO Kiyohiro
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.9-14
    • /
    • 2002
  • We propose a new algorithm for blind source separation (BSS), in which frequency-domain independent component analysis (FDICA) and time-domain ICA (TDICA) are combined to achieve a superior source-separation performance under reverberant conditions. Generally speaking, conventional TDICA fails to separate source signals under heavily reverberant conditions because of the low convergence in the iterative learning of the inverse of the mixing system. On the other hand, the separation performance of conventional FDICA also degrades significantly because the independence assumption of narrow-band signals collapses when the number of subbands increases. In the proposed method, the separated signals of FDICA are regarded as the input signals for TDICA, and we can remove the residual crosstalk components of FDICA by using TDICA. The experimental results obtained under the reverberant condition reveal that the separation performance of the proposed method is superior to that of conventional ICA-based BSS methods.

  • PDF

Moving Object Tracking by Real Time Image Analysis (실시간 영상 분석에 의한 이동 물체 추적)

  • 구상훈;이은주
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.145-156
    • /
    • 2003
  • This paper for real time object tracking in this treatise detect histogram analysis that is accumulation value of binary conversion density and edge information and body that move by real time use of difference Image techniques and proposed method to object tracking. Firstly, we extract edge that can reduce quantity of data keeping information about form of input image in object detection. Object is extracted by performing difference image and binarization in edge image. Area of detected object is determined by threshold value that divide sum of horizontal accumulation value about binary conversion density by value that add horizontalityㆍverticality maximum accumulation value. Object is tracked by comparing similarity with object that is detected in previous frame and present frame. As experiment result, proposed algorithm could improve the object detection speed, and could track object by real time and could track local movement.

  • PDF

Texture Transfer Based on Video (비디오 기반의 질감 전이 기법)

  • Kong, Phutphalla;Lee, Ho-Chang;Yoon, Kyung-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.406-407
    • /
    • 2012
  • Texture transfer is a NPR technique for expressing various styles according to source (reference) image. By late 2000s, there are many texture transfer researches. But video base researchers are not active. Moreover, they didn't use important feature like directional information which need to express detail characteristics of target. So, we propose a new method to generate texture transfer animation (using video) with directional effect for maintaining temporal coherence and controlling coherence direction of texture. For maintaining temporal coherence, we use optical flow and confidence map to adapt for occlusion/disocclusion boundaries. And we control direction of texture for taking structure of input. For expressing various texture effects according to different regions, we calculate gradient based on directional weight. With these techniques, our algorithm can make animation result that maintain temporal coherence and express directional texture effect. It is reflect the characteristics of source and target image well. And our result can express various texture directions automatically.

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar

  • Liu, Qinghua;He, Yuanxin;Jiang, Chang
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.774-783
    • /
    • 2020
  • For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.

Face Recognition Using Feature Information and Neural Network

  • Chung, Jae-Mo;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.55.2-55
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region efface candidate. The feature information in the region of face candidate is used to detect a face region. In the recognition step, as a tested, the 360 images of 30 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression, Input variables of the neural networks are the feature information that comes from the eigenface spaces. The simulation results of 30 persons show that the proposed method yields high recognition rates.

  • PDF