This study draws important factors in electronic Word-of-Mouth (eWOM) and examines how these influence the building of customer loyalty. eWOM is viewed as social communication between customers and sellers, and thus the communicative action theory is applied. With the theory, we identify reviewer and seller as influential players on customers, and derive important factors such as correctness and veracity of reviews from the reviewers' action, and information compactness and adequacy from the seller's action. We propose these constructs as antecedents of customer loyalty and further hypothesize their curvilinear impacts as follows: the marginal impacts of veracity and correctness will decrease as veracity and correctness increase, and the marginal impacts of compactness and adequacy will increase as compactness and adequacy increase. The result indicates that only the seller's action has a curvilinear impact, whereas the reviewer has proportional positive impact on customer loyalty. This study indentifies important factors in eWOM from a critical social theory perspective and validates them using the positivistic approach. For practitioners, it discusses the important factors in eWOM with the identification of the individuals who are responsible for these factors.
최근 국내 외 수자원 정책의 방향은 전통적인 이 치수 부문과 함께 삶의 질을 향상을 위해 지속가능한 물 관리에 대한 필요가 강조되면서 수자원 정보의 수집, 관리 및 제공의 중요성이 증대되고 있다. 과거 수자원 정보는 제공하고자 하는 목적을 이미 정하고 거기에 맞도록 데이터를 효과적으로 분석하는 기술에 초점이 맞추어져 있었다. 그러나 최근에는 정형 데이터뿐만 아니라 비정형 데이터를 연계함으로써 새로운 가치를 도출할 수 있는 빅 데이터와 클라우드 컴퓨팅에 대한 관심이 부각되면서 수자원 정보에도 변화를 가져오고 있다. 이에 본 논문에서는 수자원 정보 관리의 패러다임 변화에 능동적으로 대처하고, 수자원 정보의 효율적인 관리 및 이용을 위해 수자원 분야에서 빅 데이터와 클라우드 컴퓨팅의 적용 방안을 검토 및 제언하고자 하였다. 국내외 수자원 정보 관리의 현황과 방향을 살펴보고, 빅 데이터의 3대 요소인 크기(Volume), 속도(Velocity), 다양성(Variety)과 함께 추가적으로 언급되고 있는 정확성(Veracity), 가치(Value)개념을 연계하였다. 그리고 클라우드 컴퓨팅을 통해 증가하는 수자원 관련 빅 데이터와 수요자의 변화에 대해 신속하고 유연한 대처방안에 대하여 논의하였다. 앞으로의 수자원 정보 관리는 정보의 크기(Volume), 속도(Velocity), 다양성(Variety) 등의 빅 데이터와 클라우드 컴퓨팅 적용을 통한 인명과 재산의 보호 등 공공의 목적, 물 관리 및 재난의 예방과 대응에 필요한 정확한(Veracity) 정보의 생산, 그리고 다른 분야와의 융합 등에 적극적으로 활용함으로써 수자원 정보의 가치(Value)를 높이는 방행으로 나아가야 한다.
지능정보사회에서 디지털 리터러시는 필수사항이며, 리터러시 교육이 활발히 시행되고 있다. 디지털 리터러시 수준이 올라갈수록 프라이버시 우려가 증가하는데, 이는 디지털 서비스 이용을 저해할 수 있다. 이 연구에서는 스마트기기 활용 역량과 프라이버시 우려와의 관계에서 온라인 사회참여 활동과 정보 사실성 판단 능력의 매개효과와 프라이버시 리터러시의 조절효과를 검증하였다. 스마트기기를 사용하고 온라인 활동을 하는 13세 이상의 동일 패널 7,737명의 2020년과 2021년 실시한 한국미디어패널 조사 자료를 활용하였다. 주요 변인의 비교 및 분석을 위해 SPSS(v26.0)와 PROCESS Macro(v4.1, Model 15)를 이용하였다. 2020년과 2021년의 비교에서 스마트기기 활용역량과 프라이버시 리터러시는 증가 하였지만, 프라이버시 우려와 정보 사실성 판단 능력, 온라인 사회참여 활동은 감소하였음을 보았다. 분석 대상 전체와 통제 집단에서 프라이버시 우려와 정보 사실성 판단 능력의 평균간 차이가 상대적으로 크게 감소하였으며, 통계적으로도 그 차이가 유의미하다. 연구모형 검증 결과, 스마트기기 활용역량이 프라이버시 우려에 미치는 영향은 2020년과 2021년 모두 증가하는 유의적인 효과를 확인하였으며, 온라인 사회참여 활동의 매개효과와 프라이버시 리터러시의 조절된 매개효과도 확인되었다. 정보 신뢰성 판단 능력은 2020년에 유의적이지 않지만, 2021년에는 유의한 매개효과와 조절된 매개효과도 확인되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3868-3888
/
2022
A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.
본 연구는 수요 및 관심이 증대되고 있는 공간 빅데이터의 개념설정과 이를 기반으로 공간 빅데이터 기술을 활용할 수 있는 서비스 프레임워크를 개념적으로 제시하는데 목적이 있다. 공간 빅데이터는 정형 반정형 비정형 공간 빅데이터를 효율적으로 수집 저장 관리하는 동시에 공간정보와 융합된 다양한 속성정보에 대해 실시간 통합 분석을 수행하여 의미 있는 정보를 추출함으로써 미래에 대응할 수 있는 기술이라 할 수 있다. 또한 공간 빅데이터는 기존 빅데이터가 가지는 3V(Volume, Variety, Velocity) 특성에 4V(Veracity, Visualization, Versatile, Value)가 추가된 특성을 가지며, 저장 관리, 분석, 서비스로 구분하여 활용범위를 설정할 수 있다. 그리고 공간 빅데이터를 활용하기 위한 서비스 측면에서의 프레임워크를 제시하였다. 구체적으로 서비스 관리, 서비스 콘테이너, 서비스 모니터링의 구성요소로 구상안을 제시하였다. 이러한 연구결과를 참조로 새로운 기술 및 기법들을 적용하여 수정 보완하고, 향후 개발예정인 저장 관리, 분석 기술개발과 연계하여 구체적인 서비스 제공방안에 대한 연구가 지속적으로 이루어져야 할 것이다.
본 연구에서는 공간빅데이터의 개념과 특징을 정의하고 데이터에 대한 통찰력을 높일 수 있는 정보 시각화 방법론을 조사하였다. 또한 시각화 과정에서 발생할 수 있는 문제점 및 해결방법을 제시하였다. 공간빅데이터를 공간정보의 정량적인 확장의 결과와 빅데이터의 정성적인 확장의 결과로 정의하였다. 공간빅데이터는 6V(Volume, Variety, Velocity, Value, Veracity, Visualization)의 특징을 갖고 있으며, 최근 활용 서비스 측면이 이슈화 되면서 공간빅데이터에 대한 통찰력을 제공하여 데이터의 활용 가치를 높이기 위해 공간빅데이터의 시각화가 주목받고 있다. 정보 시각화의 방법은 Matthias, Ben, 정보디자인교과서 등을 통하여 다양한 방법으로 정의 되어 있으나 공간빅데이터의 시각화는 방대한 양의 원시 데이터를 대상으로 하기 때문에 데이터의 조직화 과정을 거쳐야 하며 이를 통해 사용자에게 전달하려는 정보를 추출해야 하는 차이점이 있다. 추출된 정보는 특성에 따른 적합한 시각적 표현 방법을 사용해야 하며, 많은 양의 데이터를 시각적으로 표현하는 것은 사용자에게 정확한 정보를 제공 할 수 없으므로 필터링, 샘플링, 데이터 비닝, 클러스터링 등을 이용하여 데이터를 축소하여 표현하는 방법이 필요하다.
본 연구에서는 최근 이슈가 되고 있는 공간빅데이터에 대한 개념과 효과적으로 공간빅데이터체계를 구축하기 위한 방안을 제시하였다. 공간빅데이터는 3V(volume, variety, velocity)로 정의되고 있는 빅데이터를 6V(volume, variety, velocity, value, veracity, visualization)의 빅데이터로 진화시키는 기반이라 할 수 있다. 공간빅데이터를 효과적으로 구축하기 위해서는 공간빅데이터체계 구축으로 추진되어야 하며, 공간빅데이터체계는 국가공간정보기반, 융합플랫폼, 서비스제공자, 생산요소제공자로서의 역할을 수행해야 한다. 이러한 공간빅데이터체계의 구성요소는 인프라(하드웨어), 기술(소프트웨어), 공간빅데이터(데이터), 인력, 법 제도 등이며, 공간빅데이터체계 구축을 위한 목표로 공간기반 정책수립 지원, 공간빅데이터 플랫폼 기반 산업활성화, 공간 빅데이터 융합기반 조성, 공간관련 사회현안의 적극적 해결로 제시하였다. 그리고 목표에 대한 추진전략은 범정부적 협력체계 구축, 신산업 창출 및 활용 활성화, 성과활용 중심의 공간빅데이터 플랫폼 구축, 공간빅데이터 관련 기술경쟁력 확보로 제시하였다.
과거 활용되던 재난관련 정보는 재난 발생을 신속하게 전파하거나, 피해규모, 복구자원 현황을 파악하는 등 재난피해 복구에 초점이 맞춰져 있었다. 그러나 최근에는 IT 기반이 확충되고 컴퓨팅 성능이 향상됨에 따라 그 양상이 변화하고 있다. 정형 및 비정형 데이터를 활용한 빅데이터 분석 기술은 재난의 예방과 대비를 위한 기술에 활용되고 있으며, 재난현장의 실시간 정보획득을 위해 IoT 기술이 도입되고 있다. 이처럼 재난정보의 수집, 관리, 분석 제공에 관한 중요성이 증대됨에 따라서 재난의 양상에 능동적으로 대처하고 정보의 효율적인 관리 및 이용을 위해 클라우드 컴퓨팅에 대한 관심이 부각되고 있다. 이에 본 논문에서는 재난관련 정보 활용 양상 변화에 대처하기 위해 재난관리시스템에 클라우드 컴퓨팅 서비스의 적용 방안을 검토하고자 한다. 사회가 복잡해짐에 따라 재난은 이제 사회 전반의 모든 정보를 다뤄야 하기 때문에, 과거 빅데이터의 3대 요소인 크기(Volume), 속도(Velocity), 다양성(Varsity)을 넘어 정확성(Veracity)과 가치(Value)를 뽑아낼 수 있는 방안에 대해 설명한다. 나아가 재난정보시스템의 효율적인 활용을 위한 클라우드 컴퓨팅 서비스의 활용방안에 대해 논의한다.
최근 다양하고 방대한 양의 데이터를 처리하기 위해 빅데이터의 특성인 5V(Volume, Variety, Velocity, Veracity, Value) 중에서도 속도(Velocity)의 중요성이 강조되면서 대량의 데이터를 빠르고 정확하게 처리하는 기술인 실시간 스트림 처리(Real-time Stream processing)를 위해 많은 연구가 진행되고 있다. 본 논문에서는 실시간 빅데이터 처리를 위해 대표적인 실시간 객체 모델인 TMO(Time-triggered Message-triggered Object) 개념을 도입한 Squall 프레임워크를 제시하고, 단일 노드에서 동작하는 Squall 프레임워크와 그 동작들에 대해 기술한다. TMO는 작업을 수행할 때, 특정 조건에 대해 실시간으로 처리하는 비주기적인 처리방법과 일정 시간 간격동안 주기적인 처리를 지원하는 객체 모델이다. 따라서 Squall 프레임워크는 실시간 빅데이터의 실시간 이벤트 스트림 및 마이크로-배치 처리를 동시에 지원하고, 기존 아파치 스톰과 스파크 스트리밍 대비 상대적으로 우수한 성능을 제공한다. 하지만 Squall은 대부분의 프레임워크에서 제공되는 다중 노드에서의 실시간 분산처리를 위한 추가적인 개발이 필요하다. 결론적으로, TMO 모델의 장점은 실시간 빅데이터 처리시 기존 아파치의 스톰이나 스파크 스트리밍의 단점들을 극복할 수 있다. 이러한 TMO 모델은 실시간 빅데이터 처리에 있어 유용한 모델로서의 가능성을 가지고 있다.
Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.