• Title/Summary/Keyword: Information Signal Process

Search Result 1,420, Processing Time 0.024 seconds

A Synchronization & Cell Searching Technique for OFDM-based Cellular Systems (OFDM 기반의 셀룰러 시스템을 위한 동기화 및 셀 탐색 기법)

  • Kim Kwang-Soon;Kim Sung-Woong;Chang Kyung-Hi;Cho Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, a novel preamble structure, including a synchronization preamble and a cell search preamble, is proposed for OFDM-based cellular systems. An efficient algorithm for downlink synchronization and cell searching using the preamble is also proposed. The synchronization process includes the initial symbol timing estimation using continuously, or at least, periodically transmitted downlink signal, frame synchronization, the fine symbol timing estimation, and the frequency offset estimation using the synchronization preamble, and the cell identification using the cell searching preamble. Performance of each synchronization and cell searching step is analyzed and the analytic results including the overall performance of the synchronization and cell searching are verified by computer simulation. It is shown that the proposed preamble with the corresponding synchronization and cell searching algorithm can provide very robust synchronization and cell searching capability even in bad cellular environments.

Minimum Energy-per-Bit Wireless Multi-Hop Networks with Spatial Reuse

  • Bae, Chang-Hun;Stark, Wayne E.
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, a tradeoff between the total energy consumption-per-bit and the end-to-end rate under spatial reuse in wireless multi-hop network is developed and analyzed. The end-to-end rate of the network is the number of information bits transmitted (end-to-end) per channel use by any node in the network that is forwarding the data. In order to increase the bandwidth efficiency, spatial reuse is considered whereby simultaneous relay transmissions are allowed provided there is a minimum separation between such transmitters. The total energy consumption-per-bit includes the energy transmitted and the energy consumed by the receiver to process (demodulate and decoder) the received signal. The total energy consumption-per-bit is normalized by the distance between a source-destination pair in order to be consistent with a direct (single-hop) communication network. Lower bounds on this energy-bandwidth tradeoff are analyzed using convex optimization methods. For a given location of relays, it is shown that the total energy consumption-per-bit is minimized by optimally selecting the end-to-end rate. It is also demonstrated that spatial reuse can improve the bandwidth efficiency for a given total energy consumption-per-bit. However, at the rate that minimizes the total energy consumption-per-bit, spatial reuse does not provide lower energy consumption-per-bit compared to the case without spatial reuse. This is because spatial reuse requires more receiver energy consumption at a given end-to-end rate. Such degraded energy efficiency can be compensated by varying the minimum separation of hops between simultaneous transmitters. In the case of equi-spaced relays, analytical results for the energy-bandwidth tradeoff are provided and it is shown that the minimum energy consumption-per-bit decreases linearly with the end-to-end distance.

Collaborative Sensing using Confidence Vector in IEEE 802.22 WRAN System (IEEE 802.22 WRAN 시스템에서 확신 벡터를 이용한 협력 센싱)

  • Lim, Sun-Min;Jung, Hoi-Yoon;Song, Myung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.633-639
    • /
    • 2009
  • For operation of IEEE 802.22 WRAN system, spectrum sensing is a essential function. However, due to strict sensing requirement of WRAN system, spectrum sensing process of CR nodes require long quiet period. In addition, CR nodes sometimes fail to detect licensed users due to shadowing effect of wireless communication environment. To overcome this problem, CR nodes collaborate with each other for increasing the sensing reliability or mitigating the sensitivity requirement. A general approach for decision fusion, the "k out of N" rule is often taken as the decision fusion rule for its simplicity. However, since k out of N rules can not achieve better performance than the highest SNR node when SNR is largely different among CR nodes, the local SNR of each node should be considered to achieve better performance. In this paper, we propose two novel data fusion methods by utilizing confidence vector which represents the confidence level of individual sensing result. The simulation results show that the proposed schemes improve the signal detection performance than the conventional data fusion algorithms.

Design of an Efficient Coarse Frequency Estimator Using a Serial Correlator for DVB-S2 (직렬 상관기를 이용한 디지털 위성방송 주파수 추정회로 설계)

  • Yun, Hyoung-Jin;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.434-439
    • /
    • 2008
  • This paper proposes an efficient coarse frequency synchronizer for digital video broadcasting - second generation (DVB-S2). The input signal requirement of acquisition range for coarse frequency estimator in the DVB-S2 is around ${\pm}1.5625Mhz$, which corresponds to 6.25% of the symbol rate at 25Mbaud. At the process of analyzing the robust algorithm among data-aided approaches, we find that the Luise & Reggiannini (L&R) algorithm is the most promising one for coarse frequency estimation with respect to estimation performance and complexity. However, it requires many multipliers and adders to compute output values of correlators. We propose an efficient architecture identifying the serial correlator with the buffer and multiplexers. The proposed coarse frequency synchronizer can reduce the hardware complexity about 92% of the direct implementation. The proposed architecture has been implemented and verified on the Xilinx Virtex II FPGA.

Implementation of a Network Design and Analysis Tool Supporting VoIP Simulations (VoIP 시뮬레이션을 지원하는 네트워크 설계 및 분석 도구의 구현)

  • Choi Jae-Won;Lee Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.81-89
    • /
    • 2005
  • In this paper, we have described the implementation of a practical simulation tool to design and analyze communication networks. Especially, this study is focused on the implementation and application methods of a simulator supporting VoIP The key characteristics of this particular system are its easy and intuitive usage, the real behaviors implementation of equipment and protocols, the actual generation and transmission of traffic for simulation, supporting of VoIP and so forth. Our system is distinguished from the existing tools which define only the nature of voice traffic, process those packets in the same way as general data, and analyze only the quality of packet transmission such as delay. Our tool presented in this paper generates and processes packets in different way according to the types of traffic distinguishing call signal from voice information traffic. Also, we equipped this system with the various devices such as VoIP gateway and gatekeeper, which enabled this system to analyze the performance of devices and the quality of voice traffic transmission between PSTN and Internet. By presenting the implementation methods and application of this system, we managed to propose the utilization scheme of a simulation tool.

Study on Expansion of Output Point for PLC Output Unit (PLC 출력 Unit의 출력 점수 확장에 관한 연구)

  • You Jeong-Bong;Jeon Ho-Ik;Nam Sang-Yep
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.25-32
    • /
    • 2005
  • PLC is the most widely utilized among many sorts of existing controller for the design of process control system, and study about a PLC language is performed actively. In this paper, we proposed the method that we increase an output points when increased of the output machine which is going to control it in the FA design that used PLC. Output point is going to be extended with 2-3 points in the state that cannot equip output unit in basic base any more. Then an extension base, a power supply, an extension cable and an output unit must be equipped particularly. Then a cost must be added very much. This paper propose the method which extended an output in a small quantity. We designed the expansion unit that received the points of output unit and decoded the signal and the program module that finally extended output points by encoding and decoding, and we confirmed his feasibility through a experiment.

Design of 3V CMOS Continuous-Time Filter Using Fully-Balanced Current Integrator (완전평형 전류 적분기를 이용한 3V CMOS 연속시간 필터 설계)

  • An, Jeong-Cheol;Yu, Yeong-Gyu;Choe, Seok-U;Kim, Dong-Yong;Yun, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, a continuous-time filter for low voltage and high frequency applications using fully-balanced current integrators is presented. As the balanced structure of integrator circuits, the designed filter has improved noise characteristics and wide dynamic range since even-order harmonics are cancelled and the input signal range is doubled. Using complementary current mirrors, bias circuits are simplified and the cutoff frequency of filters can be controlled easily by a single DC bias current. As a design example, the 3rd-order lowpass Butterworth filter with a leapfrog realization is designed. The designed fully-balanced current-mode filter is simulated and examined by SPICE using 0.65${\mu}{\textrm}{m}$ CMOS n-well process parameters. The simulation results show 50MHz cutoff frequency, 69㏈ dynamic range with 1% total harmonic distortion(THD), and 4㎽ power dissipation with a 3V supply voltage.

  • PDF

6-Gbps Single-ended Receiver with Continuous-time Linear Equalizer and Self-reference Generator (기준 전압 발생기와 연속 시간 선형 등화기를 가진 6 Gbps 단일 종단 수신기)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.54-61
    • /
    • 2016
  • A 6-Gbps single-ended receiver with a linear equalizer and a self-reference generator is proposed for a high-speed interface with the double data rate. The proposed single-ended receiver uses a common gate amplifier to increase a voltage gain for an input signal with low voltage level. The continuous-time linear equalizer which reduces gain to the low frequencies and achieves high-frequency peaking gain is implemented in the common gate amplifier. Furthermore, a self-reference generator, which is controlled with the resolution 2.1 mV using digital averaging method, is implemented to maximize the voltage margin by removing the offset noise of the common gate amplifier. The proposed single-ended receiver is designed using a 65-nm CMOS process with 1.2-V supply and consumes the power of 15 mW at the data rate of 6 Gbps. The peaking gain in the frequency of 3 GHz of the designed equalizer is more than 5 dB compared to that in the low frequency.

Improvement of Connector Performance Using Analysis of Characteristic Impedance (특성임피던스 분석을 사용한 커넥터 성능향상)

  • Yang, Jeong-Kyu;Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.47-53
    • /
    • 2011
  • The signal transmission properties of the connector such as insertion loss and return loss are investigated using analysis procedure of S-parameter simulation, equivalent model extraction, and characteristic impedance calculation. S-parameter simulation is performed by connector's modeling and solving based on 3-dimensional finite element method. The connector's equivalent model of ${\pi}$ type is are proposed and extracted with an optimization process of circuit analysis simulator. The characteristic impedance of the connector is calculated with results of circuit analysis simulation and S-parameter data. According to the connector's characteristic impedance, it's revised design is carried out. In this work, the connector's effective contact area is increased and its body is applied as a high dielectric material in order to increase its capacitance and then obtain impedance matching. Therefore, return loss of the connector is improved by approximately 10 dB due to its design revision.

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.