• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.028 seconds

Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling (특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로)

  • Lee, Hyun-Sang;Qiao, Xin;Shin, Sun-Young;Kim, Gyu-Ri;Oh, Se-Hwan
    • Informatization Policy
    • /
    • v.29 no.4
    • /
    • pp.43-66
    • /
    • 2022
  • With the development of artificial intelligence technology, competition for artificial intelligence technology patents around the world is intensifying. During the period 2000 ~ 2021, artificial intelligence technology patent applications at the US Patent and Trademark Office have been steadily increasing, and the growth rate has been steeper since the 2010s. As a result of analyzing Korea's artificial intelligence technology competitiveness through patent indices, it is evaluated that patent activity, impact, and marketability are superior in areas such as auditory intelligence and visual intelligence. However, compared to other countries, overall Korea's artificial intelligence technology patents are good in terms of activity and marketability, but somewhat inferior in technological impact. While noise canceling and voice recognition have recently decreased as topics for artificial intelligence, growth is expected in areas such as model learning optimization, smart sensors, and autonomous driving. In the case of Korea, efforts are required as there is a slight lack of patent applications in areas such as fraud detection/security and medical vision learning.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

On Study for the JIT System By CIM(Computer Integrated Mfg) (JIT실현을 위한 CIM구축 사례연구)

  • Lee, Jong-Hyung;Lee, Youn-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • This study for Customer Satisfaction(Customer Focus) by Profit security' in the field Process improvement activity and man-power upgrade in the learning of organization activity or upgrading ability of each peoples. This thesis study on the focus of KAPEC which introduce Toyota system can apply to VM, 3jeong, Right Box and Right Position), 5S, JIT(Just In Time), KAlZEN, KANBAN System, CIM, ERP, DAS an output of Factory. For strategic changes to take place in industry 3 key important factors need to be included ; integration of tasks functions and process, decentralization of information and responsibility and finally simplification of products and product structures. These describes how CIM can be implemented using these factors. This study for (1)System Integration, (2) Help Logistic Problems, (3) Partly facilitated growth. (4) Improved production planning (5) Real-time management. (6) Fast reporting (7) Productivity. Quality. Delivery Up, Cost reduction and Autonomy management, FMS in the Plant etc.

  • PDF

프라이버시 보존 분류 방법 동향 분석

  • Kim, Pyung;Moon, Su-Bin;Jo, Eun-Ji;Lee, Younho
    • Review of KIISC
    • /
    • v.27 no.3
    • /
    • pp.33-41
    • /
    • 2017
  • 기계 학습(machine-learning) 분야의 분류 알고리즘(classification algorithms)은 의료 진단, 유전자 정보 해석, 스팸 탐지, 얼굴 인식 및 신용 평가와 같은 다양한 응용 서비스에서 사용되고 있다. 이와 같은 응용 서비스에서의 분류 알고리즘은 사용자의 민감한 정보를 포함하는 데이터를 이용하여 학습을 수행하는 경우가 많으며, 분류 결과도 사용자의 프라이버시와 연관된 경우가 많다. 따라서 학습에 필요한 데이터의 소유자, 응용 서비스 사용자, 그리고 서비스 제공자가 서로 다른 보안 도메인에 존재할 경우, 프라이버시 보호 문제가 발생할 수 있다. 본 논문에서는 이러한 문제를 해결하면서도 분류 서비스를 제공할 수 있도록 도와주는 프라이버시 보존 분류 프로토콜(privacy-preserving classification protocol: PPCP) 에 대해 소개한다. 구체적으로 PPCP의 프라이버시 보호 요구사항을 분석하고, 기존의 연구들이 프라이버시 보호를 위해 사용하는 암호학적 기본 도구(cryptographic primitive)들에 대해 소개한다. 최종적으로 그러한 암호학적 기본 도구를 사용하여 설계된 프라이버시 보존 분류 프로토콜에 대한 기존 연구들을 소개하고 분석한다.

A Study on Automatic Detection and Extraction of Unstructured Security Threat Information using Deep Learning (딥러닝 기술을 이용한 비정형 보안 위협정보 자동 탐지 및 추출 기술 연구)

  • Hur, YunA;Kim, Gyeongmin;Lee, Chanhee;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.584-586
    • /
    • 2018
  • 사이버 공격 기법이 다양해지고 지능화됨에 따라 침해사고 발생이 증가하고 있으며, 그에 따른 피해도 확산되고 있다. 이에 따라 보안 기업들은 다양한 침해사고를 파악하고 빠르게 대처하기 위하여 위협정보를 정리한 인텔리전스 리포트를 배포하고 있다. 하지만 인텔리전스 리포트의 형식이 정형화되어 있지 않고 점점 증가하고 있어, 인텔리전스 리포트를 수작업을 통해 분류하기 힘들다는 문제점이 있다. 이와 같은 문제를 해결하기 위해 본 논문에서는 개체명 인식 시스템을 활용하여 비정형 인텔리전스 리포트에서 위협정보를 자동으로 탐지하고 추출할 수 있는 모델을 제안한다.

  • PDF

Development of Infants Music Education Application Using Augmented Reality

  • Yeon, Seunguk;Seo, Sukyong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • Augmented Reality (AR) technology has rapidly been applied to various application areas including e-learning and e-education. Focusing on the design and development of android tablet application, this study targeted to develop infant music education using AR technology. We used a tablet instead of personal computer because it is more easily accessible and more convenient. Our system allows infant users to play with teaching aids like blocks or puzzles to mimic musical play like game. The user sets the puzzle piece on the playground in front of the tablet and presses the play button. Then, the system extracts a region of interest among the images acquired by internal camera and separates the foreground image from the background image. The block recognition software analyzes, recognizes and shows the result using AR technology. In order to have reasonably working recognition ratio, we did experiments with more than 5,000 frames of actual playing scenarios. We found that the recognition rate can be secured up to 95%, when the threshold values are selected well using various condition parameters.

Study on the Application of IT and Smart Sensors to the High-Speed EMU (동력분산형 고속전철에 IT 및 스마트센서의 적용에 관한 연구)

  • Chang, Duk-Jin;Kang, Song-Hee;Song, Dahl-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1201-1208
    • /
    • 2008
  • Ubiquotuous technology should be adopted in railroad business to provide passenger's security and convenience. In this project, IT and smart sensor technologies are reviewed, benchmarked, designed, and implemented. The target system is the next generation high speed train to be developed and operated in Korea with the maximum speed of 400km/h. Wireless sensor network with smart sensors is implemented around a train car. PC-like IT terminal will be designed and implemented so an individual passenger can use it to do information retrieval through the Internet, personal data processing, the e-learning, shopping on the railroad, and so on. These provision will give comfort, convenience, and safety of a passenger during his/her trip.

  • PDF

정보보호 분야의 XAI 기술 동향

  • Kim, Hongbi;Lee, Taejin
    • Review of KIISC
    • /
    • v.31 no.5
    • /
    • pp.21-31
    • /
    • 2021
  • 컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.

Hyper-parameter Optimization for Monte Carlo Tree Search using Self-play

  • Lee, Jin-Seon;Oh, Il-Seok
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.36-43
    • /
    • 2020
  • The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.