• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.032 seconds

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

LDCSIR: Lightweight Deep CNN-based Approach for Single Image Super-Resolution

  • Muhammad, Wazir;Shaikh, Murtaza Hussain;Shah, Jalal;Shah, Syed Ali Raza;Bhutto, Zuhaibuddin;Lehri, Liaquat Ali;Hussain, Ayaz;Masrour, Salman;Ali, Shamshad;Thaheem, Imdadullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.463-468
    • /
    • 2021
  • Single image super-resolution (SISR) is an image processing technique, and its main target is to reconstruct the high-quality or high-resolution (HR) image from the low-quality or low-resolution (LR) image. Currently, deep learning-based convolutional neural network (CNN) image super-resolution approaches achieved remarkable improvement over the previous approaches. Furthermore, earlier approaches used hand designed filter to upscale the LR image into HR image. The design architecture of such approaches is easy, but it introduces the extra unwanted pixels in the reconstructed image. To resolve these issues, we propose novel deep learning-based approach known as Lightweight deep CNN-based approach for Single Image Super-Resolution (LDCSIR). In this paper, we propose a new architecture which is inspired by ResNet with Inception blocks, which significantly drop the computational cost of the model and increase the processing time for reconstructing the HR image. Compared with the other state of the art methods, LDCSIR achieves better performance in terms of quantitively (PSNR/SSIM) and qualitatively.

Contemporary Management of University's Strategic Development: the Case Study on Ukrainian Universities

  • Kovtun, Olena;Lutsiak, Vitalii;Ostapchuk, Anatolii;Lavinska, Daria;Sieriebriak, Kseniia;Kononenko, Anna;Bebko, Svitlana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.269-279
    • /
    • 2021
  • In the current conditions of world socio-economic development, the strategic support of the process of managing the development of universities has become a particularly important area. Strategic management requires reliable information and analytical support in the form of sound descriptions of strategic directions of development, assumptions, and forecasts. The purpose of the study is to substantiate and elaborate the crucial causes in the strategic management of university's development and to suggest the coherent prospects for advancements. The data analysis was performed using descriptive methods to identify the most significant causes that affect the university's strategic development; the expert assessment was used to rank the factors, ultimately to assess each factor that affects to some extent the university's strategic development; the abstract-logical method was used to ground the positive impact of computer technologies and e-learning on the strategic development of a university and to formulate proposals for its further progress. The main results provided in the given paper showed that significant and most important strategic cause of university's development lies in the field of improving the quality of education, expanding access to educational services based on computer technology and its functionality. In turn, its widespread use at all stages of the educational process allows providing a number of advancements for universities in strategic prospects.

A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm

  • Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.

From Reflection to Self-assessment: Methods of Developing Critical Thinking in Students

  • Olha I. Dienichieva;Maryna I. Komogorova;Svitlana F. Lukianchuk;Liudmyla I. Teletska;Inna M. Yankovska
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.148-156
    • /
    • 2024
  • The research paper presents the results of an experimental research of the development of critical thinking in third-year students majoring in 013 "Primary Education" in studying a special course "From Reflection to Self-Assessment: Critical Thinking Skills" (based on Lauren Starkey methodology). The research was conducted during the first half of 2019-2020 academic year. The sample representativeness was ensured by the method of random selection, the strategy of randomization according to the criteria of age, gender, level of academic performance was described. Given the confidence interval p=95% and the confidence interval of the error Δ=±0.05, the sample size was 94 people, including of the experimental group and 49 students of the control group. The peculiarities of the development of such critical thinking skills as reflective thinking, self-analysis, awareness of one's own achievements and shortcomings, choice of problem-solving strategy, use of cognitive models of learning are revealed. It was found that the development of critical thinking was achieved through a comprehensive combination of self-assessment and reflection, performing exercises to develop the ability to clearly articulate the problem, find, analyse and interpret relevant information, draw the right conclusions and explanations.

Anomaly Detection Performance Analysis of Neural Networks using Soundex Algorithm and N-gram Techniques based on System Calls (시스템 호출 기반의 사운덱스 알고리즘을 이용한 신경망과 N-gram 기법에 대한 이상 탐지 성능 분석)

  • Park, Bong-Goo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.45-56
    • /
    • 2005
  • The weak foundation of the computing environment caused information leakage and hacking to be uncontrollable, Therefore, dynamic control of security threats and real-time reaction to identical or similar types of accidents after intrusion are considered to be important, h one of the solutions to solve the problem, studies on intrusion detection systems are actively being conducted. To improve the anomaly IDS using system calls, this study focuses on neural networks learning using the soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern, That Is, by changing variable length sequential system call data into a fixed iength behavior pattern using the soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm. The backpropagation neural networks technique is applied for anomaly detection of system calls using Sendmail Data of UNM to demonstrate its performance.

  • PDF

An Enhancement Method of Document Restoration Capability using Encryption and DnCNN (암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구)

  • Jang, Hyun-Hee;Ha, Sung-Jae;Cho, Gi-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • This paper presents an enhancement method of document restoration capability which is robust for security, loss, and contamination, It is based on two methods, that is, encryption and DnCNN(DeNoise Convolution Neural Network). In order to implement this encryption method, a mathematical model is applied as a spatial frequency transfer function used in optics of 2D image information. Then a method is proposed with optical interference patterns as encryption using spatial frequency transfer functions and using mathematical variables of spatial frequency transfer functions as ciphers. In addition, by applying the DnCNN method which is bsed on deep learning technique, the restoration capability is enhanced by removing noise. With an experimental evaluation, with 65% information loss, by applying Pre-Training DnCNN Deep Learning, the peak signal-to-noise ratio (PSNR) shows 11% or more superior in compared to that of the spatial frequency transfer function only. In addition, it is confirmed that the characteristic of CC(Correlation Coefficient) is enhanced by 16% or more.

Enhanced ACGAN based on Progressive Step Training and Weight Transfer

  • Jinmo Byeon;Inshil Doh;Dana Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.11-20
    • /
    • 2024
  • Among the generative models in Artificial Intelligence (AI), especially Generative Adversarial Network (GAN) has been successful in various applications such as image processing, density estimation, and style transfer. While the GAN models including Conditional GAN (CGAN), CycleGAN, BigGAN, have been extended and improved, researchers face challenges in real-world applications in specific domains such as disaster simulation, healthcare, and urban planning due to data scarcity and unstable learning causing Image distortion. This paper proposes a new progressive learning methodology called Progressive Step Training (PST) based on the Auxiliary Classifier GAN (ACGAN) that discriminates class labels, leveraging the progressive learning approach of the Progressive Growing of GAN (PGGAN). The PST model achieves 70.82% faster stabilization, 51.3% lower standard deviation, stable convergence of loss values in the later high resolution stages, and a 94.6% faster loss reduction compared to conventional methods.

Blockchain System for Academic Credit Bank System (학점은행제를 위한 블록체인 시스템)

  • Son, Ki-Bong;Son, Min-Young;Kim, Young-Hak
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.11-22
    • /
    • 2020
  • The academic credit banking system is an educational system to implement a lifelong learning society. Students who meet the requirements of this system can achieve academic degrees equivalent to those of junior colleges or four-year universities. Credits and degree information of these students are recorded and managed by the central institution. However, this system can cause security problem such as hacking due to centralized management. In this paper, we propose an academic credit banking system which can manage credits and degree information based on blockchain technology. In the proposed system, credits and degree information are stored in block and managed in the public ledger in a permanent manner. Blocks are connected in the form of blockchain on a distributed network to improve security problems such as hacking and manipulation. Also, the efficiency of credit bank management can be increased because the functions of the central institution are distributed to the network participants. The prototype of the proposed system was implemented on the Go-Ethereum platform and experimentally verified the blockchain information among participating organizations using smart contracts.

A Study on Synthetic Data Generation Based Safe Differentially Private GAN (차분 프라이버시를 만족하는 안전한 GAN 기반 재현 데이터 생성 기술 연구)

  • Kang, Junyoung;Jeong, Sooyong;Hong, Dowon;Seo, Changho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.945-956
    • /
    • 2020
  • The publication of data is essential in order to receive high quality services from many applications. However, if the original data is published as it is, there is a risk that sensitive information (political tendency, disease, ets.) may reveal. Therefore, many research have been proposed, not the original data but the synthetic data generating and publishing to privacy preserve. but, there is a risk of privacy leakage still even if simply generate and publish the synthetic data by various attacks (linkage attack, inference attack, etc.). In this paper, we propose a synthetic data generation algorithm in which privacy preserved by applying differential privacy the latest privacy protection technique to GAN, which is drawing attention as a synthetic data generative model in order to prevent the leakage of such sensitive information. The generative model used CGAN for efficient learning of labeled data, and applied Rényi differential privacy, which is relaxation of differential privacy, considering the utility aspects of the data. And validation of the utility of the generated data is conducted and compared through various classifiers.