시맨틱 웹에서는 메타데이터와 온톨로지를 이용하여 질의를 처리하기 때문에 보다 정확한 검색 결과를 얻을 수 있을 뿐만 아니라 추론을 통하여 얻어진 새로운 지식도 검색 결과에 포함시킬 수 있다. 메타데이터와 온톨로지를 기술하기 위한 시맨틱 웹 언어 중 RDF와 RDF 스키마가 보편적으로 많이 활용되고 있다. 따라서 RDF와 RDF 스키마로 기술된 시맨틱 웹 언어에 대한 효과적인 검색 기법이 요구된다. 본 논문에서는 키워드 질의 처리 결과의 기본 단위를 전체 웹 문서나 부분이 아닌 정보 리소스로 정의하였다. 그리고 메타데이터와 온톨로지 정보를 모두 고려한 시맨틱 웹 환경의 키워드 질의를 3가지 유형으로 분류하고 다양한 관련 질의에 대한 처리를 효과적으로 지원하기 위하여 키워드 인덱스와 저장 구조를 제안하였다. 본 논문에서 제안한 키워드 인덱스는 질의 조건으로 주어진 키워드를 직접 포함하고 있는 리소스는 물론 의미적 관계에 의해 간접적으로 포함하고 있는 리소스에 관련된 정보를 쉽게 제공할 수 있다. 그리고 본 논문에서는 클래스와 속성의 일반적인 정보와 계층 정보를 단순한 레이블링 기법을 이용하여 표현한 후 제안된 저장 구조를 이용해 정보를 유지하여 시맨틱 웹 환경에 적합한 키위드 질의 처리를 지원하고자 한다.
This paper proposed a neural computer architecture for the learning of script character pattern recognition categories. Oriented filter with complex cells preprocess about the input script character, abstracts contour from the character. This contour normalized and inputed to the ART. Top-down attentional and matching mechanisms are critical in self-stabilizing of the code learning process. The architecture embodies a parallel search scheme that updates itself adaptively as the learning process unfolds. After learning ART self-stabilizes, recognition time does not grow as a function of code complexity. Vigilance level shows the similarity between learned patterns and new input patterns. This character recognition system is designed to adaptable. The simulation of this system showed satisfied result in the recognition of the hand written characters.
이벤트 로깅은 시스템 및 네트워크 관리에 있어 그 역할이 증대되고 있으며, syslog는 해당 분야에 있어 사실상의 표준으로 사용되고 있다. 그러나 대부분의 로그 분석은 반구조적 특징을 보이는 로그 형식으로 인하여 빈번히 출현하는 패턴에만 집중하고 있다. XML은 syslog 데이터를 구조화하는 데 있어 유용한 방식을 제공하고 정보 탐색을 용이하게 해 준다. 하지만 이전의 XML 형식들 및 어플리케이션들은 로그 데이터를 위한 순위 기반 검색이나 유사도 측정 등과 같은 의미론적 접근에 적합하지 않다. 본 논문에서는 XML 기반의 순위 키워드 검색 기법을 기초로, 새로운 로그 데이터 모델링을 통해 syslog 데이터를 위한 XML 트리 구조를 제안한다. 그리고 기존의 XML 구조보다 의미론적 검색에 적합함을 보인다.
본 연구는 기존의 수요 예측 등의 시계열 연구에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial neural network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 훈련 자료로는 2015년 3월부터 9월까지의 일별 KBO 관중 수 자료를 대상으로 하였다. 전방향 신경망(Feedforward neural network)의 모형 훈련 과정에서, 그리드 탐색(Grid search)을 적용하여 최적의 초모수(Hyperparameter)를 찾고자 하였다. 그 결과, 그리드 탐색법의 최적 모형을 이용한 평균 절대 백분율 오차(MAPE)는 평균 20.9% 였다. 앙상블 기법을 이용한 모형의 MAPE는 평균 20.0%였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 26.3%, 30.3% 높은 예측력을 보인다.
웹 서비스를 기반으로 한 인터넷은 비약적으로 발전하고 있으며, 차세대 웹 표준화를 위한 노력이 전세계적으로 진행 중에 있다. 처음 개발된 당시 웹은 텍스트 기반의 구조에 맞추어 HTTP, HTML, URL이 제안되어 이를 통해 비동기적인 형태의 검색과 단순하고 단일한 방식의 표현 방식을 사용해 왔다. 그러나 최근 인터넷 상의 상당수의 데이터들은 보다 복잡해지고 구조화되어 가고 있으며 동기적인 멀티미디어 정보를 포함하는 등 새로운 구조 및 표현 방식을 요구하게 되었다. W3C의 사용자 인터페이스 도메인 중 멀티미디어 동기화 그룹에서 현재 표준화 작업중인 언어는 SMIL SMIL은 웹 상에서 멀티미디어 요소들이 잘 통합되어 어느 위치에서 얼마동안 표현되는지를 기술하는 XML-기반 언어이다. 본 논문에서는SMIL 관련 표준화 동향 및 주요 이슈들을 연구 분석하고 기술 개발 내용에 대하여 논의한다.
웹 서비스를 기반으로 한 인터넷은 비약적으로 발전하고 있으며, 차세대 웹 표준화를 위한 노력이 전세계적으로 진행 중에 있다. 처음 개발된 당시 웹은 텍스트 기반의 구조에 맞추어 HTTP, HTML, URL이 제안되어 이를 통해 비동기적인 형태의 검색과 단순하고 단일한 방식의 표현 방식을 사용해 왔다. 그러나 최근 인터넷 상의 상당수의 데이터들은 보다 복잡해지고 구조화되어 가고 있으며, 동기적인 멀티미디어 정보를 포함하는 등 새로운 구조 및 표현 방식을 요구하게 되었다. W3C의 사용자 인터페이스 도메인 중 멀티미디어 동기화 그룹에서 현재 표준화 작업중인 언어는 SMIL로 SMIL은 웹 상에서 멀티미디어 요소들이 잘 통합되어 어느 위치에서 얼마동안 표현되는지를 기술하는 XML-기반 언어이다. 본 논문에서는 SML 관련 표준화 동향 및 주요 이슈들을 연구 분석하고 기술 개발 내용에 대하여 논의한다.
JSTS:Journal of Semiconductor Technology and Science
/
제14권4호
/
pp.391-406
/
2014
The performance of General-Purpose computation on Graphics Processing Units (GPGPU) is heavily dependent on the memory access behavior. This sensitivity is due to a combination of the underlying Massively Parallel Processing (MPP) execution model present on GPUs and the lack of architectural support to handle irregular memory access patterns. Application performance can be significantly improved by applying memory-access-pattern-aware optimizations that can exploit knowledge of the characteristics of each access pattern. In this paper, we present an algorithmic methodology to semi-automatically find the best mapping of memory accesses present in serial loop nest to underlying data-parallel architectures based on a comprehensive static memory access pattern analysis. To that end we present a simple, yet powerful, mathematical model that captures all memory access pattern information present in serial data-parallel loop nests. We then show how this model is used in practice to select the most appropriate memory space for data and to search for an appropriate thread mapping and work group size from a large design space. To evaluate the effectiveness of our methodology, we report on execution speedup using selected benchmark kernels that cover a wide range of memory access patterns commonly found in GPGPU workloads. Our experimental results are reported using the industry standard heterogeneous programming language, OpenCL, targeting the NVIDIA GT200 architecture.
최근에는 손의 다양한 부위에서 정맥을 인식하기 위한 생체인식 기술이 활발히 진행 중이다. 본 논문에서는 정맥 패턴을 검출하기 위한 계층적 슬라이싱 방법을 제안한다. 스캔한 정맥 이미지를 다양한 두께 값으로 슬라이싱한다. 슬라이스된 이미지에서 평균 밝기값을 구하고 이를 곡률 값으로 변환하여 정맥 후보 구역을 검출한다. 이 정맥 후보 지역을 재검색하여 중복 검출된 지점을 분석하여 실제의 정맥 패턴을 찾아낸다. 이를 통해 원래 이미지에서 정맥 패턴을 검출하는 새로운 알고리즘을 제안한다.
In this study, a star identification algorithm which utilizes pivot patterns instead of apparent magnitude information was developed. The new star identification algorithm consists of two steps of recognition process. In the first step, the brightest star in a sensor image is identified using the orientation of brightness between two stars as recognition information. In the second step, cell indexes are used as new recognition information to identify dimmer stars, which are derived from the brightest star already identified. If we use the cell index information, we can search over limited portion of the star catalogue database, which enables the faster identification of dimmer stars. The new pivot algorithm does not require calibrations on the apparent magnitude of a star but it shows robust characteristics on the errors of apparent magnitude compared to conventional pivot algorithms which require the apparent magnitude information.
In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.