• Title/Summary/Keyword: Information Recognition

검색결과 9,166건 처리시간 0.035초

On a Model of Forming the Optimal Parameters of the Recognition Algorithms

  • Hudayberdiev, Mirzaakbar Kh.;Akhatov, Akmal R.;Hamroev, Alisher Sh.
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.607-609
    • /
    • 2011
  • In this work, we present solutions of two problems. First, the representation of pattern recognition problem in the standard $T_{nml}$ table of the algorithm estimate calculation was considered. Second, the problem of finding the model, consisting of the optimal parameters of an algorithm was considered. Such procedure is carried out by the selection optimal values of the parameters of extreme algorithms. This serves to reduce the number of calculations in the algorithms of estimate calculation and to increase the quality of recognition process. The algorithmic data base of the developed system was based on mathematical apparatus of pattern recognition.

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

The Facial Expression Recognition using the Inclined Face Geometrical information

  • Zhao, Dadong;Deng, Lunman;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.881-886
    • /
    • 2012
  • The paper is facial expression recognition based on the inclined face geometrical information. In facial expression recognition, mouth has a key role in expressing emotions, in this paper the features is mainly based on the shapes of mouth, followed by eyes and eyebrows. This paper makes its efforts to disperse every feature values via the weighting function and proposes method of expression classification with excellent classification effects; the final recognition model has been constructed.

  • PDF

위치 정보 기반 객체인지에 대한 연구 (A study for object recognition based on location information)

  • 김관중
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1988-1992
    • /
    • 2013
  • 본 논문에서는 일정 지역 내에 진입한 영상 객체에 대한 객체인지 방안을 제안한다. 이 방안은 특정 지역내에 진입한 객체의 행동 패턴을 검출하고 추적하는 응용 모듈에 필요하다. 객체인지에 대한 부분은 여러 응용 모듈에서 적용될 수 있는 방안으로 단순히 영상 정보의 인식 범위에서 실제 좌표에 대한 인식으로의 확대를 위한 것이다. GPS 좌표와 영상 정보의 정합을 통하여 개체의 위치 좌표를 추출함으로서 지정 영역에서 인지된 객체의 위치를 탐색한다.

컬러 정보와 윤곽선 추적을 이용한 컨테이너 식별자 인식 (Recognition of Container Identifier using Color Information and Contour Following)

  • 김병기
    • 한국산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.40-46
    • /
    • 2006
  • 영상처리 기술을 이용한 컨테이너 식별자 자동인식은 항만자동화와 물류 처리율 향상에 매우 중요한 요소이다. 본 논문에서는 칼라정보를 이용한 윤곽선 추출과 추출된 문자영역에 대한 문자 조건 검증 알고리즘을 사용하여 입력 영상의 다양한 밝기변화와 잡음에 강한 컨테이너 식별자 인식 기법을 제안하였다. 360장의 컨테이너 영상을 대상으로 실험한 결과 제안한 방법이 식별자 인식에 유용함을 확인하였다.

  • PDF

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • 통합자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

딥러닝 기반 실시간 손 제스처 인식 (Real-Time Hand Gesture Recognition Based on Deep Learning)

  • 김규민;백중환
    • 한국멀티미디어학회논문지
    • /
    • 제22권4호
    • /
    • pp.424-431
    • /
    • 2019
  • In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.

A Study on Reconstruction Vulnerability of Daugman's Iriscode

  • Youn, Soung-Jo;Anusha, B.V.S;Kim, Gye-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.35-40
    • /
    • 2019
  • In this paper, we propose a technique to reconstruct the iris image from the iris code by analyzing the process of generating the iris code and calculating it inversely. Iris recognition is an authentication method for authenticating an individual's identity by using iris information of an eye having unique information of an individual. The iris recognition extracts the features of the iris from the iris image, creates the iris code, and determines whether to authenticate using the corresponding code. The iris recognition method using the iris code is a method proposed by Daugman for the first time and is widely used as a representative method of iris recognition technology currently used commercially. In this paper, we restore the iris image with only the iris code, and test whether the reconstructed image and the original image can be recognized, and analyze restoration vulnerability of Daugman's iris code.

Kernel Fisher Discriminant Analysis for Natural Gait Cycle Based Gait Recognition

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.957-966
    • /
    • 2019
  • This paper studies a novel approach to natural gait cycles based gait recognition via kernel Fisher discriminant analysis (KFDA), which can effectively calculate the features from gait sequences and accelerate the recognition process. The proposed approach firstly extracts the gait silhouettes through moving object detection and segmentation from each gait videos. Secondly, gait energy images (GEIs) are calculated for each gait videos, and used as gait features. Thirdly, KFDA method is used to refine the extracted gait features, and low-dimensional feature vectors for each gait videos can be got. The last is the nearest neighbor classifier is applied to classify. The proposed method is evaluated on the CASIA and USF gait databases, and the results show that our proposed algorithm can get better recognition effect than other existing algorithms.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.