서울시 대중교통체계개편에서 요금부과방안은 기본적으로 거리비례제에 근거하고 있다. 거리비례제에서 요금은 일정거리까지의 통행에 따른 기본요금과 수단적 환승에서 발생하는 환승요금, 일정거리 이상의 통행에 따른 할증요금으로 구분하여 부과된다. 본 연구는 거리비례제에 따른 요금부과 시 순차적으로 정렬된 K개의 요금경로를 탐색하는 K요금경로탐색알고리즘을 제안한다. 이를 위해 다수의 대중교통수단이 존재하는 복합교통망에서 링크표지기법을 적용하여 네트워크확장이 요구되지 않도록 하였으며, 동일링크를 통행하는 복수의 통행순단을 각각의 개별링크로 처리되도록 구축하였다. 따라서 본 연구에서 제안하는 K요금경로탐색알고리즘은 수단과 관련된 별도의 표식이 요구되지 않으므로 단일수단 교통망에 확용되는 K경로탐색알고리즘이 직접 적용될 수 있다. 본 연구는 또한 출발지에서 수단을 탑승한 이용자에게 요금이 부과되는 과정을 복합교통망에서 나타내가 위하여 출발지를 기준으로 탐색되는 인접된 두 링크에 대해서 기본요금, 환승요금, 할증요금이 계산되어 합산되는 과정을 수식으로 표현하였다. 이 수식을 K개의 원소를 포함하는 재귀벡터형태(Recursive Vector Formula)로 전화하여 K요금경로탐색을 위한 최적식과 알고리즘을 제안하였다. 간단한 사례연구를 통하여 알고리즘 수행과정을 검증하고 향후에 연구진행방향에 대하여 서술하였다.
여러 대도시에서 교통 혼잡 문제를 해결하기 위해 정확한 교통 흐름을 예측하는 다양한 연구가 진행되었다. 대부분의 연구가 과거의 교통 흐름 패턴이 미래에도 반복될 것이라는 가정하에 예측 모델을 개발하였으나 교통사고 등과 같은 뜻하지 않은 비반복적 교통 패턴을 예측하는 데에는 신뢰성이 낮게 나타났다. 이런 문제를 해결하기 위한 대안으로 지능형 교통 시스템(ITS)을 통해 얻은 빅데이터와 인공지능을 접목한 교통 흐름 예측 연구가 진행되어 왔다. 하지만 시계열 분석에 일반적으로 사용되는 알고리즘인 RNN의 경우, 단기 예측에 최적화되어 장기 예측 정확도가 낮다는 단점을 가지고 있다. 이런 문제를 해결하기 위해 본 논문에서는 기온과 강수량 등의 기상 정보 외에도 각종 외부 요인들을 고려하여 장기적 시점에서 교통 혼잡도를 예측하는 '심층 인공 신경망 모델'을 제안하였다. TOPIS 자료를 이용한 사례 연구 결과 서울시 주요 도로 링크의 교통 혼잡도를 90%에 가까운 정확도로 예측이 가능하였다. 추후 교통사고나 도로 공사와 같은 도로에 영향을 미치는 이벤트 데이터를 추가로 확보할 수 있다면 정확도는 더욱 높아질 것으로 예상된다.
본 연구는 지리정보시스템(GIS)을 이용한 분석 결과를 기존의 방식이 아닌 그린인프라적 관점에서 해석하여 결과를 도출하고, 이를 바탕으로 개발제한구역을 그린인프라 네트워크에 어떻게 활용하여 연결시키는 것이 바람직한지 알아봄으로써 개발제한구역의 활용가치를 밝혀보는데 목적이 있다. 본 연구의 결과로 개발제한구역에 대한 그린인프라 네트워크 구성의 적정성 측면에서, 공간구조와 주변지역과의 광역적 연결성 등을 바탕으로 한 결론은 다음과 같다. 첫째, 대전권 개발제한구역에서 가장 이슈가 되는 공간은 유성구에 존재하며, 이는 2000년대 초부터 시작된 주택개발을 위해 개발구역을 해제하면서 발생한 문제이다. 따라서 정확한 환경평가를 통해 개발제한구역을 추가로 해제할 것인지 아니면 녹지를 복원하여 그린인프라 네트워크 구성에 대한 새로운 방향을 제시할 것인지 정책적 판단이 필요하다. 둘째, 남북으로 연결되고 있는 대도시들의 축이 전체 충청권의 녹지축뿐만 아니라 대전권 개발제한구역과 주변지자체의 개발에도 영향을 미칠 것으로 판단되므로 이러한 경향을 반영한 개발제한구역 조정안을 마련할 필요성 있다. 셋째, 개발제한구역의 강력한 집행으로 인해 주변 도시들의 인접부에 개발 압력이 증가하는 추세이고, 이중 북쪽으로는 세종시 남쪽으로는 논산 쪽이 주요 개발 타겟이 될 것으로 판단되므로 이에 대한 대책을 수립할 필요가 있다. 넷째, 개발제한구역을 해제하거나 보전하는 양면적 접근보다 기존의 평가기준에 그린인프라적 가치를 추가하여 종합적인 광역계획과 연동된 방향설정이 필요할 것이다.
최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.
소도체의 품질평가는 축산업 분야의 중요한 문제이다. 최근 인공지능을 기반으로 한 AI 모니터 시스템을 통해 품질 관리사는 소도체 영상의 분석이나 결과 정보를 기반으로 정확한 판단에 도움을 받을 수 있다. 이러한 인공지능의 데이터셋은 성능을 판단하는 중요한 요소이다. 기존의 데이터셋은 표면의 방향이나 해상도가 달라질 수 있다. 본 논문에서는 딥러닝을 이용한 소도축 영상의 등급을 효율적으로 관리할 수 있는 단계별 분류 모델을 제안하였다. 그리고 기존의 세그멘테이션 추출된 영상의 데이터셋의 다양한 조건의 일관성을 위해 새로운 데이터셋 1,300장을 구성하였다. 새로운 데이셋을 이용한 5등급 분류에 대한 딥러닝의 인식률은 72.5%를 얻었다. 제안된 단계별 분류는 1++, 1+, 1등급과 2, 3등급의 차이가 크다는 것을 이용한 방안이다. 이로 인해 제안된 2단계 모델의 두 가지 방법에 따른 실험 결과, 73.7%, 77.2%의 인식률을 얻을 수 있었다. 이처럼 1단계 인식률을 100%를 갖는 데이터셋을 가진다면 더욱 효율적인 방법이 될 것이다.
본 연구는 연구자가 부여한 논문의 키워드 분석을 통해 기록보존 분야의 연구동향을 밝히고 시간의 경과에 따른 기록보존 분야 연구 주제의 변천과정을 파악하고자 하였다. 2000년부터 2021년까지 국내 학술지에 게재된 기록보존 연구 463편을 중심으로 NetMiner V.4를 통해 연결 중심성 분석과 매개 중심성 분석을 수행하였다. 수집한 연구논문을 학술지 게재 시기에 따라 제1구간(2000년~2007년), 제2구간(2008년~2014년), 제3구간(2015년~2021년)으로 나누어 분석하였다. 분석결과 전 구간에서는 '전자기록'과 '장기보존', 제1구간에서는 'OAIS참조모형', 제2구간에서는 '전자기록', 제3구간에서는 '기록관리기준표'과 '장기보존'이 핵심 주제 키워드로 영향력과 확장성이 높은 것으로 나타났다. 제1구간에서 '디지털 보존', '디지털화', 'OAIS참조모형' 등 기록보존을 위한 개념적 틀과 이론 중심 연구, 제2구간에서 '전자기록', '평가', 'DRAMBORA' 등 보존 활동과 관련된 절차와 실제 적용 중심 연구, 제3구간에서 '데이터세트', '행정정보시스템', '소셜미디어' 등 기록관리 환경 변화에 따른 기술적 구현 연구 주제로 진행되는 과정을 확인하였다.
전 세계적으로 사이버 공격은 계속 증가해 왔으며 그 피해는 정부 시설을 넘어 민간인들에게 영향을 미치고 있다. 이러한 문제로 사이버 이상징후를 조기에 식별하여 탐지할 수 있는 시스템 개발의 중요성이 강조되었다. 위와 같이, 사이버 이상징후를 효과적으로 식별하기 위해 BGP(Border Gateway Protocol) 데이터를 머신러닝 모델을 통해 학습하고, 이를 이상징후로 식별하는 여러 연구가 진행되었다. 그러나 BGP 데이터는 이상 데이터가 정상 데이터보다 적은 불균형 데이터(Imbalanced data)이다. 이는, 모델에 학습이 편향된 결과를 가지게 되어 결과에 대한 신뢰성을 감소시킨다. 또한, 실제 사이버 상황에서 보안 담당자들이 머신러닝의 정형적인 결과로 사이버 상황을 인식시킬 수 없는 한계도 존재한다. 따라서 본 논문에서는 전 세계 네트워크 기록을 보관하는 BGP(Border Gateway Protocol)를 조사하고, SMOTE(Synthetic Minority Over-sampling Technique) 활용해 불균형 데이터 문제를 해결한다. 그 후, 사이버 공방(Cyber Range) 상황을 가정하여, 오토인코더를 통해 사이버 이상징후 분류하고 분류된 데이터를 가시화한다. 머신러닝 모델인 오토인코더는 정상 데이터의 패턴을 학습시켜 이상 데이터를 분류하는 성능을 92.4%의 정확도를 도출했고 보조 지표도 90%의 성능을 보여 결과에 대한 신뢰성을 확보한다. 또한, 혼잡한 사이버 공간을 가시화하여 효율적으로 상황을 인식할 수 있기에 사이버 공격에 효과적으로 방어할 수 있다고 전망된다.
최근 AI 스피커 시장의 규모가 급속도 커지면서 AI 스피커의 다양한 활용 가능성이 크게 주목받고 있다. 소비자들이 다양한 채널을 통해 제품을 사용한 경험을 표현하고 공유하는 환경을 만들어 졌고, 그로 인하여 소비자가 제품을 이용한 경험에 대한 다양하고 솔직한 생각을 남긴 리뷰들의 양이 방대해졌는데, 이러한 리뷰데이터는 소비자의 생각을 분석하는 데에 매우 유용하다고 할 수 있다. 본 연구에서는 이 리뷰데이터를 활용하여 AI 스피커 지속적인 사용에 영향을 미치는 요인에 대하여 분석하고자 하였다. 무엇보다 선행연구를 통하여 도출된 AI 사용의도에 영향을 미치는 7가지 요인들이 실제로 소비자들이 남기는 리뷰에서도 나타나는 요인인지를 확인하고자 하였다. 이를 위해, Amazon.com의 아마존 에코 제품에 대한 고객 리뷰데이터를 기반으로 하여 텍스트마이닝과 사회관계망 분석을 활용하여 분석하였다. 리뷰데이터를 긍정리뷰와 부정리뷰로 분류하고 전처리하여 도출된 단어들 간 연결성을 중심으로 AI 스피커의 지속적인 사용에 영향을 미치는 요인을 분류하고자 연결 중심성 분석을 하였으며, 이를 통해 연결성의 위치가 비슷한 단어들 간 분류를 하기 위하여 CONCOR 분석을 하였다. 긍정 리뷰 연구 결과, 소비자들은 AI 스피커 지속적 사용에 영향을 미치는 요인으로 의인화와 친밀성을 가장 중요하게 보았다. 이 두 요인들은 다른 요인들과도 강한 연결 관계를 보여주었고, 선행연구에서 도출된 요인 외에 연결성도 중요한 요인임을 도출하였다. 또한 추가적으로 부정적인 리뷰 분석 결과, 인식오류와 호환성이 AI 스피커 사용에 있어서 소비자들에게 부정적인 영향을 주는 주요 요인들로 도출되었다. 이러한 연구 결과를 토대로 본 연구에서는 소비자들이 아마존 에코 제품을 지속적으로 사용하게 하는 구체적인 방법에 대하여 제시하고자 한다.
The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.
높은 에너지 밀도와 고순도 수소 생산의 측면에서 고분자 전해질 연료전지와 수전해가 주목받고 있다. 고분자 전해질 연료전지 및 수전해를 위한 촉매층은 귀금속 계열의 전기 촉매와 이오노머 바인더로 구성되어 있는 다공성 전극이다. 이 중 이오노머 바인더는 촉매층 내 이온 전도를 위한 3차원 네트워크 형성과 전극 반응에 필요한 또는 생성되는 물질들의 이동을 위한 기공 형성에 중요한 역할을 수행한다. 상용 과불소계 이오노머의 활용 측면에서 이오노머의 함량, 이오노머의 물성, 그리고 이를 분산시킬 분산 매체에 촉매층의 성능 및 내구성이 크게 달라진다. 현재까지 고분자 전해질 연료전지용 촉매층을 위한 이오노머의 활용 방법은 많은 연구가 진행되어왔으나 고분자 전해질 수전해 적용 방면에서는 촉매층 연구가 다소 미비한 실정이다. 본 총설에서는 현재까지 보고된 연료전지 측면에서의 이오노머 바인더 활용 연구결과를 요약하였으며, 수소 경제 시대의 가속화를 위해서 고분자 전해질 수전해 핵심요소 중 하나인 촉매층용 이오노머 바인더에 관한 연구에 유용한 정보를 제공하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.