• 제목/요약/키워드: Information Network Analysis

검색결과 7,165건 처리시간 0.033초

스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석 (Clustering Performance Analysis of Autoencoder with Skip Connection)

  • 조인수;강윤희;최동빈;박용범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.403-410
    • /
    • 2020
  • 오토인코더의 데이터 복원(Output result) 기능을 이용한 노이즈 제거 및 초해상도와 같은 연구가 진행되는 가운데 오토인코더의 차원 축소 기능을 이용한 클러스터링의 성능 향상에 대한 연구도 활발히 진행되고 있다. 오토인코더를 이용한 클러스터링 기능과 데이터 복원 기능은 모두 동일한 학습을 통해 성능을 향상시킨다는 공통점이 있다. 본 논문은 이런 특징을 토대로, 데이터 복원 성능이 뛰어나도록 설계된 오토인코더 모델이 클러스터링 성능 또한 뛰어난지 알아보기 위한 실험을 진행했다. 데이터 복원 성능이 뛰어난 오토인코더를 설계하기 위해서 스킵연결(Skip connection) 기법을 사용했다. 스킵연결 기법은 기울기 소실(Vanishing gradient)현상을 해소해주고 모델의 학습 효율을 높인다는 장점을 가지고 있을 뿐만 아니라, 데이터 복원 시 손실된 정보를 보완해 줌으로써 데이터 복원 성능을 높이는 효과도 가지고 있다. 스킵연결이 적용된 오토인코더 모델과 적용되지 않은 모델의 데이터 복원 성능과 클러스터링 성능을 그래프와 시각적 추출물을 통해 결과를 비교해 보니, 데이터 복원 성능은 올랐지만 클러스터링 성능은 떨어지는 결과를 확인했다. 이 결과는 오토인코더와 같은 신경망 모델이 출력된 결과 성능이 좋다고 해서 각 레이어들이 데이터의 특징을 모두 잘 학습했다고 확신할 수 없음을 알려준다. 마지막으로 클러스터링의 성능을 좌우하는 잠재변수(latent code)와 스킵연결의 관계를 분석하여 실험 결과의 원인에 대해 파악하였고, 파악한 결과를 통해 잠재변수와 스킵연결의 특징정보를 이용해 클러스터링의 성능저하 현상을 보완할 수 있다는 사실을 보였다. 이 연구는 한자 유니코드 문제를 클러스터링 기법을 이용해 해결하고자 클러스터링 성능 향상을 위한 선행연구이다.

환상박피 처리에 의한 일본잎갈나무의 착과유도 효과와 대사물질의 변화 (Enhanced Strobilus Production and Metabolic Alterations in Larix kaempferi by Stem Girdling)

  • 이위영;박응준;강진택;안진권
    • 한국산림과학회지
    • /
    • 제100권3호
    • /
    • pp.367-373
    • /
    • 2011
  • 낙엽송(Larix kaempferi)의 종자에 대한 수요는 증가하고 있으나 채종원에서의 종자생산량은 저조한 실정이다. 종자생산량을 증가시키기 위하여 42년생의 낙엽송 채종목에 환상박피처리를 한 결과 처리목에서 착과량과 착과목 비율이 무처리목에 비해 매우 높게 나타나 환상박피의 처리효과가 명확하였다. 환상박피처리에 의한 낙엽송 채종목의 대사물질 변화를 무처리간 비교분석하기위하여 GC/MS를 이용하여 주관부위의 흉고높이에서 체관부를 포함한 형성층조직 내의 대사물질을 분석하였다. 환상박피 처리목에서 14종의 극성 및 비극성 물질의 함량이 무처리목에 비해 유의적으로 차이가 있는 것으로 나타났다. 환상박피 처리에 의해 인산, sucrose, pimaric acid와 미지 물질 2종의 함량이 무처리목에 비해 상대적으로 증가하였고, malic acid, inositol, 2종의 2당류, 11-trans-Octadecenoic acid 및 4종의 미지 물질 함량은 상대적으로 감소한 것으로 나타났다. 또한 환상박피 처리 목은 무처리목에 비해 유의적으로 높은 전질소 함량을 나타냈다. 이러한 연구결과는 환상박피 처리에 의한 대사물질의 변화에 대한 정보를 제공하고 나아가 낙엽송 종자 생산 증진을 위한 연구에 이용될 수 있을 것이다.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

고교학점제 연구학교 운영 사례 분석을 통한 가정과 교육공동체의 고교학점제 준비 방안에 대한 탐색적 연구 (An Exploratory Study on the Preparation for the High School Credit System of the Home Economics Education Community through the Analysis of Operation Case of High School Credit System Research School)

  • 한주
    • 한국가정과교육학회지
    • /
    • 제33권2호
    • /
    • pp.1-25
    • /
    • 2021
  • 본 논문의 목적은 고교학점제 연구학교 운영사례를 통해 가정과 교육공동체에서 고교학점제를 준비하기 위한 방안을 탐색하는데 있다. 이를 위해 2019년 고교학점제 연구학교를 운영한 강원도 지역 H 고등학교의 운영 과정을 5개월간 모니터링 하고, 학생, 학부모, 교사를 대상으로 설문조사와 면담을 실시하여 교육과정 운영 내용을 파악하였다. H 고등학교의 고교학점제 운영사례를 바탕으로 가정과 교육공동체의 준비 방안을 제안하면 다음과 같다. 가정과 교사들은 학생들에게 매력적이고 의미 있는 가정 수업을 제공할 수 있도록 수업과 평가를 개선하고, 온라인 공동교육과정을 포함하여 가정교과 영역의 다양한 선택과목을 개설하는데 적극적인 노력을 기울여야 한다. 가정과 교사 공동체 및 관련 학회는 지역의 가정교과 연구회를 하나로 연결하는 공고한 네트워크를 구축하여 교육과정 운영과 관련된 정보를 공유하고 수업 연구 결과를 확산하는 채널로 삼을 필요가 있다. 가정교과 교원양성기관은 변화하는 교원양성정책에 발맞추어 예비교사가 현장에서 다교과를 지도할 수 있는 역량을 기르도록 교육과정을 혁신하고, 현장교사 재교육을 위한 질 높은 온/오프라인 프로그램을 개발하여 제공해야 한다.

다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구 (Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques)

  • 박경선;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.449-456
    • /
    • 2021
  • 침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

딥러닝과 머신러닝을 이용한 아파트 실거래가 예측 (Apartment Price Prediction Using Deep Learning and Machine Learning)

  • 김학현;유환규;오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.59-76
    • /
    • 2023
  • 코로나 시대 이후 아파트 가격 상승은 비상식적이었다. 이러한 불확실한 부동산 시장에서 가격 예측 연구는 매우 중요하다. 본 논문에서는 다양한 부동산 사이트에서 자료 수집 및 크롤링을 통해 2015년부터 2020년까지 87만개의 방대한 데이터셋을 구축하고 다양한 아파트 정보와 경제지표 등 가능한 많은 변수를 모은 뒤 미래 아파트 매매실거래가격을 예측하는 모델을 만든다. 해당 연구는 먼저 다중 공선성 문제를 변수 제거 및 결합으로 해결하였다. 이후 의미있는 독립변수들을 뽑아내는 전진선택법(Forward Selection), 후진소거법(Backward Elimination), 단계적선택법(Stepwise Selection), L1 Regularization, 주성분분석(PCA) 총 5개의 변수 선택 알고리즘을 사용했다. 또한 심층신경망(DNN), XGBoost, CatBoost, Linear Regression 총 4개의 머신러닝 및 딥러닝 알고리즘을 이용해 하이퍼파라미터 최적화 후 모델을 학습시키고 모형간 예측력을 비교하였다. 추가 실험에서는 DNN의 node와 layer 수를 바꿔가면서 실험을 진행하여 가장 적절한 node와 layer 수를 찾고자 하였다. 결론적으로 가장 성능이 우수한 모델로 2021년의 아파트 매매실거래가격을 예측한 후 실제 2021년 데이터와 비교한 결과 훌륭한 성과를 보였다. 이를 통해 머신러닝과 딥러닝은 다양한 경제 상황 속에서 투자자들이 주택을 구매할 때 올바른 판단을 할 수 있도록 도움을 줄 수 있을 것이라 확신한다.

Monte Carlo 기법을 이용한 교통카드기반 수도권 지하철 통행배정 (Trip Assignment for Transport Card Based Seoul Metropolitan Subway Using Monte Carlo Method)

  • 이미영;남두희
    • 한국ITS학회 논문지
    • /
    • 제22권2호
    • /
    • pp.64-79
    • /
    • 2023
  • 본 연구는 Monte Carlo 기법을 교통카드기반의 수도권 지하철의 통행배정 문제에 적용하는 과정을 검토하였다. 연구는 우선 교통카드에서 역 간 표본의 통행에서 나타나는 통행시간에 대하여 프로빗 모형의 기반이 되는 정규분포의 가정을 적용하였다. Monte Carlo 통행배정은 역 간 통행에 대하여 평균과 표준편차를 산정하고 이를 개별 링크의 차내시간과 환승의 보행 및 배차간격의 가중치로 적용하는 방안을 제안하였다. 샘플 수가 50 이하로 낮게 나타나는 장거리 통행은 유사 통행의 특성을 이전하는 방안으로 적용하였다. 수도권 지하철 네트워크에 대하여 두 가지 방향에서 연구 결과를 검토하였다. 하나는 선릉-성수의 단일 역 간 통행에 대하여 차내시간 및 환승시간에 랜덤샘플링을 적용하는 방안으로 검증하였다. 다음으로 수도권 지하철 전체에 대해서는 역 간 통행 샘플수에 따라서 50 이상은 역 간 정규분포의 가정을 그대로 수용하였다. 샘플수가 50 이하의 장거리 통행은 역 간 최소거리가 122 (Km)에서 표본의 균등성이 확보되는 상황으로 판단하고 이 거리에서 나타나는 카드자료의 역 간 평균과 표준편차를 적용하였다. 사례연구로서 교통카드자료로 구축된 수도권 지하철을 네트워크를 대상으로 단일OD 및 전체 OD의 통행배정의 결과를 도출하였다. 한편 통행에 대한 샘플링이 부족한 상황에서 추가적인 연구가 필요한 것으로 나타났다.

센서 데이터를 위한 스마트 통합 처리 시스템 연구 (Study of Smart Integration processing Systems for Sensor Data)

  • 지효상;김재성;김리원;김정준;한익주;박정민
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권8호
    • /
    • pp.327-342
    • /
    • 2017
  • 본 논문은 센서 데이터를 수집하고 효과적으로 처리하는 IoT 서비스를 위한 스마트 센서 데이터 통합 처리 시스템을 소개한다. IoT 분야의 발전으로 센서 데이터를 수집하고 이를 네트워크로 송·수신하는 기술을 바탕으로 하는 스마트 홈, 자율주행 자동차 등의 다양한 프로젝트가 진행됨에 따라 센서 데이터를 처리하고 효과적으로 활용하기 위한 자율제어 시스템이 이슈가 되고 있다. 그러나 자율제어 시스템의 모니터링을 위한 센서 데이터 형식은 도메인에 따라 다르기 때문에 각기 다른 다양한 도메인에 자율제어 시스템을 적용하는 스마트 센서 데이터 통합 처리 시스템이 필요하다. 따라서 본 논문은 스마트 센서 데이터 통합 처리 시스템을 소개하고, 이를 적용시켜 창문을 기준으로 내부와 외부의 센서 데이터를 처리하기 위해 1) receiveData, 2) parseData, 3) addToDatabase의 3단계 프로세스를 가지고, 자율제어 시스템에 의하여 쾌적한 실내 환경을 조성하기 위해 환기를 하는 자동 창문 개폐 시스템 'Smart Window'를 제안하고 구현한다. 이를 통해 대기 정보를 수집해 모니터링하며, 저장된 데이터를 토대로 통계 분석 및 더 나은 자율제어 수행을 위한 기계학습을 가능하게 한다.

SWAT 모형을 이용한 미래 토지이용변화가 수문 - 수질에 미치는 영향 분석 (The Analysis of Future Land Use Change Impact on Hydrology and Water Quality Using SWAT Model)

  • 박종윤;이미선;이용준;김성준
    • 대한토목학회논문집
    • /
    • 제28권2B호
    • /
    • pp.187-197
    • /
    • 2008
  • 본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 경안천 유역($255.44km^2$)을 대상으로 미래 토지이용변화가 수문-수질에 미치는 영향을 분석하고자 하였다. Landsat TM(1987, 1991, 1996, 2004), $ETM^+$(2001) 위성영상으로부터 시계열 토지이용도를 작성하고, CA-Markov 기법을 이용하여 2030, 2060, 2090년도의 미래 토지이용변화를 예측하였다. 모형의 입력 자료인 수문 기상자료와 지형자료(DEM, 토양도, 하천도 등), 수질자료(SS, T-N, T-P)를 구축하고 1999, 2000년 자료를 이용하여 모형의 보정을 실시하였으며, 2001, 2002년에 대하여 검증하였다. 검보정 결과, 유출량에 대해 모형 효율성 계수는 0.59, 수질항목(Sediment, T-N, T-P)에 대한 결정계수는 0.88, 0.72, 0.68로 분석되었다. 미래 토지이용변화에 따른 유출량과 비점오염 부하량의 변화를 분석한 결과, 도시화가 진행되면서 2004년을 기준(76.3)으로 유역 평균 CN값이 2030년 76.9, 2060년 77.1, 2090년 77.4로 증가하면서 유출량이 1.4%, 2.0%, 2.7% 증가하는 것으로 분석되었다. 또한, 비점오염원의 증가로 유사량과 T-N, T-P 부하량은 2004년을 기준으로 2030년 51.4%, 5.0%, 11.7% 증가하였으며, 2060년 70.5%, 8.5%, 16.7% 2090년에 74.9%, 10.9%, 19.9% 증가하는 것으로 분석되었다.