• Title/Summary/Keyword: Information Error

Search Result 11,144, Processing Time 0.037 seconds

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Adaptive Quantization Scheme for Multi-Level Cell NAND Flash Memory (멀티 레벨 셀 낸드 플래시 메모리용 적응적 양자화기 설계)

  • Lee, Dong-Hwan;Sung, Wonyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.540-549
    • /
    • 2013
  • An adaptive non-uniform quantization scheme is proposed for soft-decision error correction in NAND flash memory. Even though the conventional maximizing mutual information (MMI) quantizer shows the optimal post-FEC (forward error correction) bit error rate (BER) performance, this quantization scheme demands heavy computational overheads due to the exhaustive search to find the optimal parameter values. The proposed quantization scheme has a simple structure that is constructed by only six parameters, and the optimal values of them are found by maximizing the mutual information between the input and the output symbols. It is demonstrated that the proposed quantization scheme improves the BER performance of soft-decision decoding with only small computational overheads.

A New Data Partitioning of DCT Coefficients for Error-resilient Transmission of Video (비디오의 에러내성 전송을 위한 DCT 계수의 새로운 분할 기법)

  • Roh, Kyu-Chan;Kim, Jae-Kyoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.585-590
    • /
    • 2002
  • In the typical data partitioning for error-resilient video coding, motion and macroblock header information is separated from the texture information. It can be an effective tool for the transmission of video over the error prone environment. For Intra-coded frames, however, the loss of DCT (discrete cosine transform) coefficients is fatal because there is no ther information to reconstruct the corrupted macroblocks by errors. For Inter-coded frames, when error occurs in DCT coefficients, the picture quality is degraded because all DCT coefficients are discarded in those packets. In this paper, we propose an efficient data partitioning and coding method for DCT-based error-resilient video. The quantized DCT coefficients are partitioned into the even-value approximation and the remainder parts. It is shown that the proposed algorithm provides a better quality of the high priority part than the conventional methods.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

Hybrid ARQ scheme using RCPC codes in Wireless (무선 ATM 환경에서 RCPC 코드를 이용한 하이브리드 ARQ 기법)

  • Han, Eun-Jung;Cho, Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.12-21
    • /
    • 2002
  • In this paper, we propose a new hybrid ARQ scheme to consider real-time and non real-time services in a wireless ATM network. Real-time and non-real-time services require different error control schemes according to each service characteristics. Therefore, in the next generation mobile communication environments where these service scenarios should be deployed, hybrid ARQ scheme using RCPC code with variable coding rate becomes one of the most suitable solutions. Because the variable coding rate is applied according to traits of transmitted frame and channel status, hybrid ARQ scheme using RCPC code can expect UEP effect. The UEP scheme does not apply equal error protection level to all information, but does high error protection level to more important information. In Our scheme, UEP of high error protection level is applied to real-time service, and UEP of low error protection and retransmission techniques are applied to non real-time service. We show that the proposed hybrid ARQ scheme improves channel utilization efficiency and yields high error correction behaviors.

Study of Rate of Human Error by Workers in the Field based on Occupation (작업장 근로자의 직종별 Human Error 발생요인 연구)

  • Im Wan-Hee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.56-67
    • /
    • 2004
  • This study analyzes human error of workers performing simple repetitive tasks, and in order to prepare preventative measures, 486 people were used as subjects. The results of the study are like the following. First, the biggest cause of human error showed to be the worker himself in $77.8\%$ of the cases, machinery showed to be the cause in $16.3\%$ of the cases and management showed to be the cause in $6.0\%$ of the cases. The results show that most of the human error occurred due to the worker performing simple repetitive tasks and the human errors showed to be caused more by bad ergonomics and long hours rather than by problems with machinery. In addition, the area with the highest rate of human error showed to be the Human Information Processing System with Task Input Error being the highest with $46.9\%$, followed by Judgement and Memory Error with $36.4\%$ and Recognition Verification Error with $16.7\%$. Although fully automated tasks may reduce the rate of human error we must focus on lowering the rate of problems arising from spontaneous errors caused by workers performing simple repetitive tasks by continuously renewing plans and budgets in order to standardize tasks by incorporating cyclic positioning according to experience and positional exchange and by inspecting the workplace to increase efficiency of the workers.

  • PDF

Key-word Error Correction System using Syllable Restoration Algorithm (음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.165-172
    • /
    • 2010
  • There are two method of error correction in vocabulary recognition system. one error pattern matting base on method other vocabulary mean pattern base on method. They are a failure while semantic of key-word problem for error correction. In improving, in this paper is propose system of key-word error correction using algorithm of syllable restoration. System of key-word error correction by processing of semantic parse through recognized phoneme meaning. It's performed restore by algorithm of syllable restoration phoneme apply fluctuation before word. It's definitely parse of key-word and reduced of unrecognized. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.3% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

UEP Effect Analysis of LDPC Codes for High-Quality Communication Systems (고품질 통신 시스템을 위한 LDPC 부호의 UEP 성능 분석)

  • Yu, Seog Kun;Joo, Eon Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.471-478
    • /
    • 2013
  • Powerful error control and increase in the number of bits per symbol should be provided for future high-quality communication systems. Each message bit may have different importance in multimedia data. Hence, UEP(unequal error protection) may be more efficient than EEP(equal error protection) in such cases. And the LDPC(low-density parity-check) code shows near Shannon limit error correcting performance. Therefore, the effect of UEP with LDPC codes is analyzed for high-quality message data in this paper. The relationship among MSE(mean square error), BER(bit error rate) and the number of bits per symbol is analyzed theoretically. Then, total message bits in a symbol are classified into two groups according to importance to prove the relationship by simulation. And the UEP performance is obtained by simulation according to the number of message bits in each group with the constraint of a fixed total code rate and codeword length. As results, the effect of UEP with the LDPC codes is analyzed by MSE according to the number of bits per symbol, the ratio of the message bits, and protection level of the classified groups.

A Study on Stochastic Simulation Models to Internally Validate Analytical Error of a Point and a Line Segment (포인트와 라인 세그먼트의 해석적 에러 검증을 위한 확률기반 시뮬레이션 모델에 관한 연구)

  • Hong, Sung Chul;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2013
  • Analytical and simulation error models have the ability to describe (or realize) error-corrupted versions of spatial data. But the different approaches for modeling positional errors require an internal validation that ascertains whether the analytical and simulation error models predict correct positional errors in a defined set of conditions. This paper presents stochastic simulation models of a point and a line segm ent to be validated w ith analytical error models, which are an error ellipse and an error band model, respectively. The simulation error models populate positional errors by the Monte Carlo simulation, according to an assumed error distribution prescribed by given parameters of a variance-covariance matrix. In the validation process, a set of positional errors by the simulation models is compared to a theoretical description by the analytical error models. Results show that the proposed simulation models realize positional uncertainties of the same spatial data according to a defined level of positional quality.

Disc Tilt Error Measurement using Reconstructed Image Pattern for Holographic Data Storage (홀로그래픽 정보저장기기의 재생 이미지 패턴을 이용한 디스크 틸트 오차 측정)

  • Lim, Sung-Yong;Han, Cho-Lok;Kim, Do-Hyung;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.67-71
    • /
    • 2012
  • Page-oriented holographic data storage (HDS) is very sensitive to the tilt error. Therefore, tilt error should be measured and compensated. Especially, mechanical tilt measurement method cannot cope with tilt error measurement because photopolymer medium has shrinkage problem. Therefore, the method to solve this problem is using the reconstructed image which can represent both tilt and shrinkage effect. In this paper, we suggest disc tilt measurement algorithm using image pattern of retrieval data.