• Title/Summary/Keyword: Information Delay

Search Result 5,526, Processing Time 0.028 seconds

Matrix completion based adaptive sampling for measuring network delay with online support

  • Meng, Wei;Li, Laichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3057-3075
    • /
    • 2020
  • End-to-end network delay plays an vital role in distributed services. This delay is used to measure QoS (Quality-of-Service). It would be beneficial to know all node-pair delay information, but unfortunately it is not feasible in practice because the use of active probing will cause a quadratic growth in overhead. Alternatively, using the measured network delay to estimate the unknown network delay is an economical method. In this paper, we adopt the state-of-the-art matrix completion technology to better estimate the network delay from limited measurements. Although the number of measurements required for an exact matrix completion is theoretically bounded, it is practically less helpful. Therefore, we propose an online adaptive sampling algorithm to measure network delay in which statistical leverage scores are used to select potential matrix elements. The basic principle behind is to sample the elements with larger leverage scores to keep the traits of important rows or columns in the matrix. The amount of samples is adaptively decided by a proposed stopping condition. Simulation results based on real delay matrix show that compared with the traditional sampling algorithm, our proposed sampling algorithm can provide better performance (smaller estimation error and less convergence pressure) at a lower cost (fewer samples and shorter processing time).

Improved Maximum Access Delay Time, Noise Variance, and Power Delay Profile Estimations for OFDM Systems

  • Wang, Hanho;Lim, Sungmook;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4099-4113
    • /
    • 2022
  • In this paper, we propose improved maximum access delay time, noise variance, and power delay profile (PDP) estimation schemes for orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. To this end, we adopt the approximate maximum likelihood (ML) estimation strategy. For the first step, the log-likelihood function (LLF) of the received OFDM symbols is derived by utilizing only the cyclic redundancy induced by cyclic prefix (CP) without additional information. Then, the set of the initial path powers is sub-optimally obtained to maximize the derived LLF. In the second step, we can select a subset of the initial path power set, i.e. the maximum access delay time, so as to maximize the modified LLF. Through numerical simulations, the benefit of the proposed method is verified by comparison with the existing methods in terms of normalized mean square error, erroneous detection, and good detection probabilities.

Delay Guaranteed Fair Queueing (DGFQ) in Multimedia Wireless Packet Networks (멀티미디어 무선 패킷망에서 지연시간을 보장하는 공정큐잉)

  • Yang, Hyunho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.916-924
    • /
    • 2003
  • Fair queueing has been an important issue in the multimedia networks where resources are shared among nodes both wired and wireless. In most fair queuing algorithms, based on the generalized processor sharing(GPS), emphasizes fairness guarantee while overlooking bounded delay guarantee which is critical to support multimedia services in the networks. In this paper, we propose a new fair queueing scheme, delay guaranteed fair queueing (DGFQ), which guaranteeing bounded delay of flows according to their individual delay requirements for multimedia services in the wireless packet networks.

Asymmetric Information and Bargaining Delays (비대칭적 정보와 협상지연)

  • Choi, Chang-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1683-1689
    • /
    • 2013
  • Applying Markov Stochastic Process theory, this paper attempts to suggest a tentative model explaining how private information may cause bargaining delay. It is shown that the bargaining delay is critically dependent on the specification of information. It turns out that the delay tends to be longer in bargaining where information is imperfect. This means that bargaining models frequently can have an infinite delay under imperfect information while they have finite delay of bargaining before reaching the agreements if information is perfect. Other interesting result is that bargaining delay may depend on who makes the offer first. And it is also shown that bargaining tends to end earlier if both players (seller and buyer) can make offers in turn than the case where only one side make a offer.

Delay Analysis of Carrier Sense Multiple Access with Collision Resolution

  • Choi, Hyun-Ho;Lee, In-Ho;Lee, Howon
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.275-285
    • /
    • 2015
  • To improve the efficiency of carrier sense multiple access (CSMA)-based medium access control (MAC) protocols, CSMA with collision resolution (CSMA/CR) has been proposed. In the CSMA/CR, a transmitting station can detect a collision by employing additional sensing after the start of a data transmission and then resolve the next collision that might occur by broadcasting a jam signal during a collision detection (CD) period. In this paper, we analyze the delay of a CSMA/CR based on a generic p- persistent CSMA model and obtain the minimum achievable delay of the CSMA/CR by finding the optimal length of the CD period according to the number of contending stations. Through this delay analysis, we also investigate the throughput-delay characteristics of the CSMA/CR protocol according to various parameters. Analysis and simulation results show that the CSMA/CR has a considerably lower delay and its throughput-delay characteristic is significantly improved than the conventional CSMA/CA and wireless CSMA/CD protocols.

A Digital DLL with 4-Cycle Lock Time and 1/4 NAND-Delay Accuracy

  • Kim, Sung-Yong;Jin, Xuefan;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This paper presents a fully digital delay locked loop (DLL) that can acquire lock in four clock cycles with a resolution of a 1/4 NAND-delay. The proposed DLL with a multi-dither-free phase detector acquires the initial lock in four clock cycles with 1/2 NAND-delay. Then, it utilizes a multi-dither-free phase detector, a region accumulator, and phase blenders, to improve the resolution to a 1/4 NAND-delay. The region accumulator which continuously steers the control registers and the phase blender, adaptively controls the tracking bandwidth depending on the amount of jitter, and effectively suppresses the dithering jitter. Fabricated in a 65 nm CMOS process, the proposed DLL occupies $0.0432mm^2$, and consumes 3.7 mW from a 1.2-V supply at 2 GHz.

Measurement of Time Delay in Optical Fiber Line Using Rayleigh Scattering (Rayleigh 산란을 이용한 광선로의 time delay 측정)

  • Kwon, Hyung-Woo;Yu, Il;Yu, Yun-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.365-369
    • /
    • 2012
  • It is very important to control synchronization by inter-network delay compensation in high speed synchronous optcial transmission network systems. In this study we designed a delay measurement system based on OTDR using Rayleigh backscatterer in order to compensate for time delay due to the length of optical fiber line. We observed waveform variations on both averaging time and peak power of laser pulse. Finally, we executed experimental demonstration on its accuracy and test repeatability by comparison to the methods practically used in the industry. Experimental results show maximum error of 0.06usec and standard deviation of 0.021usec, which means it's possibly applied to delay control system for mobile repeaters and stations.

A Multichannel TDMA MAC Protocol to Reduce End-to-End Delay in Wireless Mesh Networks

  • Trung, Tran Minh;Mo, Jeong-Hoon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.819-822
    • /
    • 2010
  • Supporting QoS over multihop wireless mesh networks is difficult because end-to-end delay increases quickly with the increasing number of hops. This paper introduces a novel multichannel time-division multiple-access media access control (McTMAC) protocol that can help to efficiently reduce delay over multihop networks. Performance evaluation results demonstrate that McTMAC outperforms existing alternative protocols. The max-delay can be reduced by as much as 60% by using McTMAC.

5-GHz Delay-Locked Loop Using Relative Comparison Quadrature Phase Detector

  • Wang, Sung-Ho;Kim, Jung-Tae;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.102-105
    • /
    • 2004
  • A Quadrature phase detector for high-speed delay-locked loop is introduced. The proposed Quadrature phase detector is composed of two nor gates and it determines if the phase difference of two input clocks is 90 degrees or not. The delay locked loop circuit including the Quadrature phase detector is fabricated in a 0.18 um Standard CMOS process and it operates at 5 GHz frequency. The phase error of the delay-locked loop is maximum 2 degrees and the circuits are robust with voltage, temperature variations.

A Belay Prevention Algorithm of Cardiac Depolarization Wave Detection for Pacemakers or Automatic Implantable Cardioverter/Defibrillator (AICD) (이식용 심장박동기(Pacemaker) 및 심장 세동제거기 (AICD)를 위한 심장 탈분극파 검출지연 방지 알고리즘)

  • Kim, J.K.;Park, C.K.;Han, S.H.;Cho, B.S.;Huh, W.
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1063-1066
    • /
    • 1999
  • The delay of cardiac depolarization wave detection in the conventional pacemakers or AICD (automatic implantable cardioverter/ defibrillator, or ICD) has been overlooked. However, it is known that the delay may cause hemodynamic problems and may prevent the proper operation of a new automatic feature, automatic capture verification, that is to be appeared in the near-future devices. In order to reduce the effects of the delay, a delay prevention algorithm was developed and tested by applying three human electrograms. The algorithm set the sensing threshold just above the measured noise level to reduce the detection delay. It is found that the low threshold was able to reduce the delay by 20msec(average) In most cases. The implementation results showed reliability and efficacy of the algorithm, and the algorithm could be applicable to the existing hardware and software of the conventional pacemakers and AICD without any significant modifications.

  • PDF