• Title/Summary/Keyword: Influenza H1N1

검색결과 233건 처리시간 0.026초

신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망 (Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus)

  • 장경수
    • 대한임상검사과학회지
    • /
    • 제42권1호
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

2019년 국내에서 분리한 H1N2 돼지 인플루엔자바이러스 유전자 분석 및 이의 마우스에 대한 감염성 (Genetic Analysis of the 2019 Swine H1N2 Influenza Virus Isolated in Korean Pigs and Its Infectivity in Mice)

  • 장윤영;서상희
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.749-762
    • /
    • 2020
  • 돼지인플루엔자는 동물에서 사람에게 감염할 수 있는 인수공통전염병이다. 우리는 2019년 한국 돼지농장에서 호흡기 증상을 보이는 돼지에서 3주의 H1N2형 인플루엔자바이러스를 분리하였다. 유전자 분석결과, 이들 바이러스의 8개 유전자 중 PA 및 NP 유전자는 2009 대유행 H1N1 인플루엔자 유래였고, 나머지 유전자는 돼지에 유행하는 H3N2 및 H1N2 인플루엔자 유래 유전자를 가진 재조합 바이러스 이었다. 분리된 H1N2 바이러스를 마우스에 접종한 결과, 마우스는 17% 정도 체중이 감소하였고, 염증 세포들이 침윤한 간질성 폐렴 증상을 보였다.

Comparative Study of the Nucleotide Bias Between the Novel H1N1 and H5N1 Subtypes of Influenza A Viruses Using Bioinformatics Techniques

  • Ahn, In-Sung;Son, Hyeon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2010
  • Novel influenza A (H1N1) is a newly emerged flu virus that was first detected in April 2009. Unlike the avian influenza (H5N1), this virus has been known to be able to spread from human to human directly. Although it is uncertain how severe this novel H1N1 virus will be in terms of human illness, the illness may be more widespread because most people will not have immunity to it. In this study, we compared the codon usage bias between the novel H1N1 influenza A viruses and other viruses such as H1N1 and H5N1 subtypes to investigate the genomic patterns of novel influenza A (H1N1). Totally, 1,675 nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A virus, including H1N1 and H5N1 subtypes occurring from 2004 to 2009, were used. As a result, we found that the novel H1N1 influenza A viruses showed the most close correlations with the swine-origin H1N1 subtypes than other H1N1 viruses, in the result from not only the analysis of nucleotide compositions, but also the phylogenetic analysis. Although the genetic sequences of novel H1N1 subtypes were not exactly the same as the other H1N1 subtypes, the HA and NA genes of novel H1N1s showed very similar codon usage patterns with other H1N1 subtypes, especially with the swine-origin H1N1 influenza A viruses. Our findings strongly suggested that those novel H1N1 viruses seemed to be originated from the swine-host H1N1 viruses in terms of the codon usage patterns.

The 2009 H1N1 Pandemic Influenza in Korea

  • Kim, Jae Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권2호
    • /
    • pp.70-73
    • /
    • 2016
  • In late March of 2009, an outbreak of influenza in Mexico, was eventually identified as H1N1 influenza A. In June 2009, the World Health Organization raised a pandemic alert to the highest level. More than 214 countries have reported confirmed cases of pandemic H1N1 influenza A. In Korea, the first case of pandemic influenza A/H1N1 infection was reported on May 2, 2009. Between May 2009 and August 2010, 750,000 cases of pandemic influenza A/H1N1 were confirmed by laboratory test. The H1N1-related death toll was estimated to reach 252 individuals. Almost one billion cases of influenza occurs globally every year, resulting in 300,000 to 500,000 deaths. Influenza vaccination induces virus-neutralizing antibodies, mainly against hemagglutinin, which provide protection from invading virus. New quadrivalent inactivated influenza vaccine generates similar immune responses against the three influenza strains contained in two types of trivalent vaccines and superior responses against the additional B strain.

경남지역 내 돼지에서의 swine influenza virus (H1N1, H3N2) 감염률 조사 (Seroprevalence survey of swine influenza virus (H1N1, H3N2) in pigs in Gyeongnam area)

  • 장은희;하도윤;박동엽;이국천;허정호
    • 한국동물위생학회지
    • /
    • 제34권3호
    • /
    • pp.195-200
    • /
    • 2011
  • Swine influenza is an acute respiratory disease prevalent in pig-growing areas all around the world and plays the roles of an intermediate host to be transmitted to mammals including human beings through a genetic recombination with the avian influenza virus. Recognizing that people could be contracted with swine influenza, this study set out to investigate the seroprevalence of individual and multiple infections with two subtypes (H1N1 and H3N2) of the swine influenza virus in pig farms in the Gyeongnam region according to age, area, and season, as well as to provide basic data for the prevention and control of swine influenza. Used in the study were total 904 swine sera that were not vaccinated against the influenza gathered from the pig farms in the Gyeongnam region from November, 2009 to October, 2010. HerdChek SIV (H1N1, H3N2) ELISA kit (IDEXX Laboratories, USA) was used for antibody testing against swine influenza. The test results show that 370 sera (40.9%) were infected with either H1N1 or H3N2 with 37.3% (337 sera) being contracted with H1N1, 13.1% (118 sera) with H3N2, and 9.4% (85) with both H1N1 and H3N2.

알칼리성 소독액에 의한 조류인플루엔자바이러스 불활성화 (Inactivation of Avian Influenza Viruses by Alkaline Disinfectant Solution)

  • 조수경;김희만;이창준;이주섭;서상희
    • 생명과학회지
    • /
    • 제17권3호통권83호
    • /
    • pp.340-344
    • /
    • 2007
  • 조류인플루엔자바이러스는 사람 및 동물에 상당한 위협을 가하고 있다. 이 연구는 알칼리성 소독용액이 H5N1, H3N2, H6N1, H9N2형 조류인플루엔자바이러스를 불활성화시킬 수 있는지를 조사했다. 알칼리성 소독용액을 생리식염수에 100배 희석한 경우 조류인플루엔자가 MDCK 세포에서 증식하는 것을 완전히 억압하였다. 형광항체법을 이용한 실험에서도 알칼리성소독액을 처리한 H9N2 조류인플루엔자바이러스는 MDCK세포에서 증식이 억제되었고, 알칼리성 소독액을 처리하지 않은 H9N2조류인플루엔자바이러스는 증식이 억제되지 않았다. 이 결과는 알칼리성 소독액은 고병원성 H5N1을 포함을 조류인플루엔자바이러스를 방역하는데 도움이 될 수 있음을 시사한다.

인플루엔자 연관 폐렴 (Influenza Associated Pneumonia)

  • 김재열
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권4호
    • /
    • pp.285-292
    • /
    • 2011
  • After an outbreak of H1N1 influenza A virus infection in Mexico in late March 2009, the World Health Organization raised its pandemic alert level to phase 6, and to the highest level in June 2009. The pandemic H1N1/A influenza was caused by an H1N1 influenza A virus that represents a quadruple reassortment of two swine strains, one human strain, and one avian strain of influenza. After the first case report of H1N1/A infection in early May 2009, South Korea was overwhelmed by this new kind of influenza H1N1/A pandemic, which resulted in a total of 700,000 formally reported cases and 252 deaths. In this article, clinical characteristics of victims of H1N1/A influenza infection, especially those who developed pneumonia and those who were cared for in the intensive care unit, are described. In addition, guidelines for the treatment of H1N1/A influenza virus infection victims in the ICU, which was suggested by the Korean Society of Critical Care Medicine, are introduced.

지역거점병원 간호사의 신종인플루엔자 관련 지식, 감염관리 인지도 및 이행도 (Influenza A (H1N1) Regional Base Hospital Nurse's Knowledge, Awareness and Practice of Infection Control)

  • 양남영;최정실
    • 성인간호학회지
    • /
    • 제21권6호
    • /
    • pp.593-602
    • /
    • 2009
  • Purpose: This study was to provide baseline data about nurses' Influenza A (H1N1) knowledge, awareness, and practice of infection control and to identify the significant factor affecting the level of practice. Methods: The subjects of this study were 144 nurses who worked at Influenza A (H1N1) regional base Hospital in D city. Data were collected by self-reported questionnaires during September 2009. The collected data were analyzed using SPSS/WIN 12.0 program. Results: The knowledge of Influenza A (H1N1) was statistically different according to age, unit, career and experience of seasonal influenza vaccination during the last year. The awareness of infection control was statistically different according to age, career, experience of seasonal influenza vaccination for last year and intention to get seasonal influenza vaccination for this year. The practice of infection control was statistically different according to unit, experience of seasonal influenza vaccination for last year, intention to get seasonal influenza vaccination for this year and intention to get Influenza A (H1N1) vaccination for this year. There was positive correlation among knowledge, awareness and practice (p < .05). Awareness was the significant factor affecting the level of practice. Conclusion: An educational program focusing on strategy to change nurse's awareness can be effective for infection control of Influenza A (H1N1) in regional base hospitals.

  • PDF

일개 도시 지역거점병원 간호사의 신종인플루엔자에 대한 지식, 태도 및 수행도와의 관계 (Relationship of Nurses' Knowledge, Attitude and Practice in an Influenza A (H1N1) Base-Zone Hospital)

  • 최정실;최주순;박승미
    • 임상간호연구
    • /
    • 제15권3호
    • /
    • pp.85-94
    • /
    • 2009
  • Purpose: The purpose of this study was to identify the relationship of influenza A (H1N1) knowledge, attitude and practice for nurses. Methods: Data were collected by self-report questionnaires from a total of 325 nurses working in an Influenza A (H1N1) base-zone hospital in C city during September, 2009. The collected data were analyzed using of SPSS/WIN 17.0. Results: The knowledge of influenza A (H1N1) was not statistically different for gender, age, education, work unit, clinical experience, position, or previous education of Influenza A (H1N1). The attitude to influenza A (H1N1) was statistically significant according to age or clinical experience. Practice related to influenza A (H1N1) was statistically different for education, clinical experience or previous education of influenza A (H1N1). Knowledge of influenza A (H1N1) was lowest for etiology and definition compared to other subcategories. Attitude and practice were significantly different for all items. The biggest difference in items was for 'use of physical barriers (protective goggles, face masks and gowns) during procedures that may involve contact with aerosol'. There was a positive association between attitude and practice. Conclusion: An educational program focusing on strategy to change nurses's knowledge, attitude and practice can be effective for infection control in an influenza A (H1N1) base-zone hospital.

Genetic and Antigenic Characterization of Swine H1N2 Influenza Viruses Isolated from Korean Pigs

  • Jo, Su-Kyoung;Kim, Hyun-Soo;Cho, Sung-Whan;Seo, Sang-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.868-872
    • /
    • 2007
  • H1N2 influenza viruses are circulating in pigs worldwide and cause considerable economic losses to the pig industry. We genetically analyzed the genes of our isolates from Korean pigs, and compared the antigenicity of our isolates with swine H1N2 viruses isolated from pigs in the U.S.A. In addition, we serologically surveyed the infection rate of swine H1N2 viruses in pigs. We found that H1N2 isolates from Korean pigs are genetically more related to swine H1N2 viruses isolated from pigs in the U.S.A. than those in European countries. When antigenicity was compared, our isolates were weakly reacted to antibodies against swine H1N2 viruses isolated from pigs in the U.S.A. The serological surveillance using sera from pigs in Korea showed that about 46% was positive for H1N2 viruses. Our results suggest that swine H1N2 viruses are widespread in Korean pigs, and the development of a vaccine against H1N2 viruses may help to control their infection in pigs.