• 제목/요약/키워드: Influence Propagation

검색결과 558건 처리시간 0.036초

무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석 (Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements)

  • 윤정방;김두기;김유진;박종찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF

샌드위치 패널의 전단변형이 파동전달 및 방음 특성에 미치는 영향 (Effects of shear deformation of sandwich panels on wave propagation and sound radiation characteristics)

  • 박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.110-113
    • /
    • 2005
  • Theoretical models to study the vibro-acoustic performance of a sandwich panel are proposed. The wave propagation characteristics are analyzed, and dispersion relation is derived. The vibration Is analyzed using the Mindlin plate theory. The vibration of the compliantly supported Mindlin plate is investigated using the Rayleigh-Ritz method. The Timoshenko beam functions are used as trial functions. The model is applied to numerically investigate the influence of the plate mechanical properties. The vibro-acoustic properties are mostly determined by bending deformation at low frequencies. At higher frequencies, the shear deformation has a strong influence. The proposed numerical model is used to estimate the optimal panel properties that result in minimum sound radiation. With increasing dynamic stiffnesses the vibration response decreases but the radiating wavenumber components increase.

  • PDF

다층 공동주택의 중량충격원 전파 특성 해석 (Heavy-weight floor impact noise propagation in a multi-story building)

  • 이신엽;황덕영;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2014
  • In multi-story buildings, heavy-weight floor impact noise propagates through multiple layers. In order to evaluate the influence of structural vibration and propagation, the actual twelve-story building was excited by an impact ball. Sound and vibration responses of each floor was measured using accelerometers and a microphone. Vibration characteristics and its transfer paths were different depending on the excitation floor locations due to differences in the structural characteristics. From the measurement result, transfer characteristics were quantified by statistical energy analysis. It was confirmed that the heavy-weight floor impact noise influence not only adjacent floor. The impact noise transferred and affected multiple layers.

  • PDF

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

피로크랙 진전수명의 확률특성에 관한 연구 II (A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(II) -The Distribution of Crack Propagation Rate-)

  • 윤한용
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1561-1567
    • /
    • 1990
  • 본 연구에서는 고강도 알루미늄합금 A12024-T3재의 통계적시험에 의하여 시험 편두께가 피로크랙 진전속도의 분포에 미치는 영향을 밝히고자 하며, 또한, 통계적시 험의 능률화 및 일관성을 꾀하기 위하여 개발한 새로운 유형의 자동화 다단식 피로시 험기의 개략을 밝힌다.

테일러드 블랭크 레이저 용접 강판의 피로균열 전파 거동 (Fatigue Crack Propagation Behavior of Steel Plate of Laser Welded Tailored Blank)

  • 한문식;이양섭
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.120-126
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range$({\Delta}K)$ region and faster in high ${\Delta}K$ region than that of the base metal specimens.

티탄계 초소성합금 SP-700의 저사이클 피로수명곡선의 절곡현상에 대하여 (A Study on the Knee Point of Low-cycle Fatigue Life in High Formability Titanium Alloy SP-700)

  • 김민건;;지정근
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.129-135
    • /
    • 1997
  • Previous studies has shown that the curve of low-cycle fatigue life was not expressed with the single line subjected to Manson-Coffin's law type and bent to short life in low ${\Delta}{\varepsilon}_p$ region. The main cause of this phenomenon has been considered that the localization of plastic strain in the crack initiation process fosters the crack initiation. In this study, the low-cycle fatigue life was investigated for each specimens omitted crack initiation process and it was found that fatigue life curve in log(${\Delta}{\varepsilon}_p$)-log($N_f$)was bent in low ${\Delta}{\varepsilon}_p$ region as ever. Therefore, the main cause of appearance of knee point in fatigue life curve is not found in the crack initiation process but in the crack propagation process. In the crack propagation process, the localization of the plastic strain in the vicinity of crack tip and the influence of test environment on the crack propagation rate were observed and these inclinations were more remarkable in low ${\Delta}{\varepsilon}_p$ region. Hence, it was concluded that these two phenomena in the crack propagation process were proved to the main cause which accelerates the crack propagation in low ${\Delta}{\varepsilon}_p$ region and bent the fatigue life curve in result.

  • PDF

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

Wave propagation analysis of the ball in the handball's game

  • Yongyong Wang;Qixia Jia;Tingting Deng;Mostafa Habibi;Sanaa Al-Kikani;H. Elhosiny Ali
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.729-742
    • /
    • 2023
  • It is a recent attraction to the mechanical scientists to investigate state of wave propagation, buckling and vibration in the sport balls to observe the importance of different parameters on the performance of the players and the quality of game. Therefore, in the present study, we aim to investigate the wave propagation in handball game ball in term of mass of the ball and geometrical parameters wit incorporation of the viscoelastic effects of the ball material into account. In this regard, the ball is modeled using thick shell structure and classical elasticity models is utilized to obtain the equation of motion via Hamilton's principle. The displacement field of the ball model is obtained using first order shear deformation theory. The resultant equations are solved with the aid of generalized differential quadrature method. The results show that mass of the ball and viscoelastic coefficient have considerable influence on the state of wave propagation in the ball shell structure.