• Title/Summary/Keyword: Inflow noise

Search Result 67, Processing Time 0.025 seconds

A Study on Trailing Edge Noise from a Blade Cascade in a Uniform Flow (케스케이드 날개 후단소음 특성에 관한 연구)

  • Son, J.M.;Kim, H.J.;Lee, S.;Jo, Seong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.652-657
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level.

  • PDF

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF

Trailing Edge Noise Modification in a Blade Cascade (익렬 날개 후단소음의 저감)

  • Son, J.-M.;Kim, H.-J.;Lee, S.;Cho, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.116-122
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulenca separation, and boundary layer thickness on the blade. The design parameters such as solidity (c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level for every case of stagger angle.

  • PDF

Trailing Edge Noise Modification in a Blade Cascade (익렬 날개 후단소음의 저감)

  • Son, J.M.;Kim, H.J.;Lee, S.B.;Cho, S.M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.7-14
    • /
    • 2003
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer thickness on the blade. The design parameters such as solidity (c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level for every case of stagger angle.

Experimental Study of Trailing Edge Shape of Forward Curved Blade upon Radiated Noise (원심 전향익 송풍기 날개 후단의 형상에 따른 소음 분석)

  • KIM, H.-J.;JUNG, K.-H.;LEE, C.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.137-142
    • /
    • 2000
  • The turbulent broadband sound power from a forward curved bladed fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. This paper reports the effects of the solidity (C/s) and the stagger angles upon the trailing edge noise with respect to the trailing edge shapes of circular-arc cambered blade of multi-bladed fan, and discusses the major physical mechanism of reduced noise lot the circular trailing-edged case.

  • PDF

Analysis of Trail-Edge Noise from Sirocco Fans (시로코 홴 날개후단 소음예측)

  • Kim, Kyoung-Ho;Lee, Seung-Bae;Kim, Ji-Sung;Kwon, Yang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.396-401
    • /
    • 2000
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the solidity and the stagger angle upon the trailing edge noise from the circular arc-shaped blade of sirocco fan.

  • PDF

Prediction of Noise Radiation induced by Grille of the Airconditioning Appliance (공조기 실외기 그릴 소음 예측)

  • Shim, In-Bo;Heo, Dae-Nyoung;Chung, Choon-Myun;Lee, Duck-Joo;Kim, Chang-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1386-1392
    • /
    • 2000
  • This paper presents a new prediction method of radiated noise from grille of the airconditioning appliance. Laminar vortex sheddings behind a circular cylinder are simulated by solving two dimensional unsteady incompressible Navier-Stokes equation. The Finite Elements Method(FEM) and unstructured grid generation technique are applied to solve, the unsteady lift/drag coefficients are obtained to compute far-field noise using Lighthill's acoustic analogy. Grille is divided into some cylinder segments, and radiated noise from grille is obtained by summing noise generated from each segment. The effects of changing cross section of cylinder and grille geometry are studied. And sound pressure levels radiated from typical H-type grille are measured in KAIST anechoic wind tunnel at various inflow conditions and compared with numerical predictions.

  • PDF

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.809-815
    • /
    • 2009
  • The previous work(Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the beam-forming measurement system(B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.63-67
    • /
    • 2009
  • The previous work (Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the Beam-forming measurement system (B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

  • PDF

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.