• Title/Summary/Keyword: Inflow characteristics

Search Result 753, Processing Time 0.027 seconds

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particle in Automobile Chassis System PART I : Analysis of Dust Particle for Inflow in Automobile Chassis System (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-시일 부품의 마멸특성 PART I : 자동차 섀시 시스템에 유입되는 먼지입자분석)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.120-124
    • /
    • 2009
  • In automobile chassis system, several environmental factors weaken durability of automobile's components. The environmental factors are temperature, humidity, intensity of radiation and dust particle inflow. Especially, dust particle inflow leads to increase in friction and wear of automobile's components. The wear of automobile's component leads to increase in noise and exerts a bad influence on life of components. In this study, dust particles were investigated for study on the influence of dust particle inflow. Dust particles are collected on urban area, rural area and highway in China. The size of dust particle is analyzed using the image plus program, and the element of dust particle is analyzed using the SEM and EDX. The elements of dust particle are $SiO_2$ and $Al_{2}O_{3}$. The other elements(Na, Ca, Cl etc..) are detected on urban area and highway.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Flow Characteristics with Inflow-Duct Types in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (연소 배출가스의 유입방식에 따른 백필터를 활용한 흡착/촉매 통합공정 시스템 반응기 내 유동특성)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.425-434
    • /
    • 2007
  • An integrated adsorption/catalytic process has been considered to treat dioxin and $NO_x$ simultaneously. The process consists of a cyclone and a reactor with nine bag filters. In this study, numerical analysis has been performed to understand flow characteristics with inflow-duct types in the reactor. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution and distribution of activated carbon have been obtained from the numerical analysis. Also trace length and residence time of flue gas, residence time of activated carbon particles have been calculated directly. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The flow characteristics in the reactor were strongly influenced by inflow-duct types. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan (축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

TBM mechanical characteristics for NFGM in mechanized tunnelling

  • Pill-Bae Hwang;Beom-Ju kim;Seok-Won Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2024
  • The process of inspecting and replacing cutting tools in a shield tunnel boring machine (TBM) is called cutterhead intervention (CHI) (Farrokh and Kim 2018). Since CHI is performed by a worker who enters the chamber in TBM, the worker is directly exposed to high water pressure and huge water inflow, especially in areas with high ground water levels, causing health problems for the worker and shortening of available working hours (Kindwall 1990). Ham et al. (2022) proposed a method of reducing the water pressure and water inflow by injecting a grout solution into the ground through the shield TBM chamber, and named it the new face grouting method (NFGM). In this study, the TBM mechanical characteristics including the injection pressure of the grout solution and the cutterhead rotation speed were determined for the best performance of the NFGM. To find the appropriate injection pressure, the water inflow volume according to the injection pressure change was measured by using a water inflow test apparatus. A model torque test apparatus was manufactured to find the appropriate cutterhead rotation speed by investigating the change in the status of the grout solution according to the rotation speed change. In addition, to prove the validity of this study, comprehensive water inflow tests were carried out. The results of the tests showed that the injection pressure equal to overburden pressure + (0.10 ~ 0.15) MPa and the cutterhead rotation speed of 0.8 to 1.0 RPM are the most appropriate. In the actual construction site, it is recommended to select an appropriate value within the proposed range while considering the economic feasibility and workability.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

A High-efficiency Trim Method for CFD Numerical Calculation of Helicopter Rotors

  • Ye, Zhou;Xu, Guo-hua;Shi, Yong-jie;Xia, Run-ze
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.186-196
    • /
    • 2017
  • In order to resolve the trimming difficulty in rotor CFD calculations, a high-efficiency and improved "delta trim method" is established to compute the blade control settings that are necessary to identify the blade motion. In this method, a simplified model which combines the blade element theory and different inflow models is employed to calculate the control settings according to the target aerodynamic forces, then it is coupled into a CFD solver with unsteady Navier-Stokes equations by the delta methodology, which makes the control settings and aerodynamics calculated and updated in the meantime at every trim cycle. Different from the previous work, the current research combines the inflow model based on prescribed wake theory. Using the method established, the control settings and aerodynamic characteristics of Helishape 7A, AH-1G and Caradonna-Tung rotors are calculated. The influence of different inflow models on trimming calculations is analyzed and the computational efficiency of the current "delta trim method" is compared with that of the "CFD-based trim method". Furthermore, for the sake of improving the calculation efficiency, a novel acceleration factor method is introduced to accelerate the trimming process. From the numerical cases, it is demonstrated that the current "delta trim method" has higher computational efficiency than "CFD-based trim method" in both hover and forward flight, and up to 70% of the amount of calculation can be saved by current "delta trim method" which turns out to be satisfactory for engineering applications. In addition, the proposed acceleration factor shows a good ability to accelerate the trim procedure, and the prescribed wake inflow model is always of better stability than other simple inflow models whether the acceleration factor is utilized in trimming calculations.

Development of a Lift Correction Method for Shear Flow Effects in BEM Theory (BEM 이론을 위한 전단유동 효과 보정 기법 개발)

  • Lee, Kyung Seh;Jung, Chin Hwa;Park, Hyun Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • In this study, the effects of shear flows around a 2-dimensional airfoil, S809 on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. Shear rate in a flow makes some changes in the lift coefficient depending on its sign and magnitude but angle of attack does not have a distinguishable influence. Cord length and reference inflow also cause proportional and inversely proportional changes in lift coefficient, respectively. We adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a modified form applicable to the traditional load analysis procedure based on the blade element momentum theory. Some preliminary results applied to an well known load simulation software, FAST, are presented.

  • PDF

Characteristics of Small Hydro Power Resources for River System (수계별 소수력자원의 특성)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.1-193.1
    • /
    • 2010
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF