• 제목/요약/키워드: Inflammatory mediator

검색결과 208건 처리시간 0.028초

Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

  • Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.80-90
    • /
    • 2017
  • Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, $S1P_{1-5}$. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn's disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.

Paraquat 유도 페독성에 대한 Hydroxycinnamic Acid계 화합물의 독성 경감 효과 (III) (Scavenging Effects of Hydroxycinnamic Acids on Paraquat Induced Pulmonary Toxicity (III))

  • 최병기;오은정;정세영
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권3호
    • /
    • pp.95-101
    • /
    • 1999
  • The scavenging effects of two hyaroxycinnamic acids such as caffeic acid and chlorogenic acid on paraquat induced pulmonary toxicity were investigated. The results are summerized as follows: 1. In the 5-lipoxygenase assay, caffeic acid and chlorogenic acid inhibited the enzyme activities whose inhibition concentration (IC$\_$50/) were 4.1 and 9.6 ${\mu}$M respectively. 2. To evaluate the antiinflammatory effects on mediator related to the mechanism of inflammation, ADP-induced platelet aggregation assay and histamine degranulation assay were used. Caffeic acid and chlorogenic acid inhibited on ADP-induced platelet aggregation and histamine release at a concentration dependent manners. 3. Arachidonic acid-induced ear edema were inhibited by administration of caffeic acid and chlorogenic acid. 4. Cytologicad analysis of branchoalveolar lavage fluid (BALF) which was the useful tool for detection of an inflammatory response in the lungs of animals intoxicated with chemicals were used. Alveolar macrophages and neutrophils in BALF, as well as the protein content and the LDH activity in BALF supernatant increased by intoxication of paraquat, but decreased by administration of caffeic acid and chlorogenic acid. Therefore, two hydroxyeinnamic acids tested were the useful candidates for scavenger and antiinflammatory agents on paraquat induced pulmonary toxicity.

  • PDF

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen;Kronenberg, Mitchell
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.67-72
    • /
    • 2014
  • The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

A rare case of Sjogren-Larsson syndrome with recurrent pneumonia and asthma

  • Tavasoli, Azita;Sayyahfar, Shirin;Behnam, Babak
    • Clinical and Experimental Pediatrics
    • /
    • 제59권6호
    • /
    • pp.276-279
    • /
    • 2016
  • Sjogren-Larsson syndrome (SLS) is a rare autosomal recessive neurocutaneous disorder with worldwide incidence of 0.4 per 100,000 people. It is characterized by the triad of congenital ichthyosis, spastic diplegia or quadriplegia, and mental retardation. Herein we report a 2-year-old male child with SLS, asthma, and recurrent pneumonia. SLS was confirmed by a molecular genetics study that revealed a deletion mutation in the ALDH3A2 gene. An ALDH3A2 gene mutation results in dysfunction of the microsomal enzyme fatty aldehyde dehydrogenase and impaired metabolism and accumulation of leukotriene B4, which is a key molecule and a pro-inflammatory mediator in developing allergic diseases, especially asthma. An increased level of leukotriene B4 has been reported in SLS patients. As far as we are aware, this is the first report of SLS associated with asthma and recurrent pneumonia. In conclusion, pediatricians should be aware of and evaluate patients with SLS for possible associated asthma and allergic disorders.

LPS로 자극한 RAW264.7 대식세포주에서 회향 추출물에 의한 염증성 매개물의 생성 억제 (Inhibition of lipopolysaccharide-stimulated inflammatory mediator production in RAW264.7 macrophages by Foeniculum vulgare fruit extract)

  • 최은미;구성자
    • 한국식품조리과학회지
    • /
    • 제20권5호
    • /
    • pp.505-510
    • /
    • 2004
  • 이물질 침입에 대한 인식의 결과 NO, PGE$_2$, TNF-, IL-6와 같은 여러 신호전달물질의 분비가 개시되며 이들을 억제하는 물질을 항염증제라고 볼 수 있다. 본 연구에서는 회향(Foeniculum vulgare Mill.) 열매 추출물이 mouse macrophages RAW264.7 세포에서 lipopolysaccharide(LPS)로 유도한 NO(iNOS 산물), PGE$_2$(COX-2 산물) 및 cytokines (TNF-$\alpha$, IL-6) 생성 억제에 미치는 영향을 살펴보았다. 회향 열매의 methanol 추출물 및 분획물(chloroform, butanol, and aqueous fractions)은 4~100$\mu$g/mL 농도에서 LPS가 활성화된 대식 세포에서 NO 생성을 억제하였으며 독성을 나타내지 않았다. LPS가 유도한 PGE$_2$ 생성은 butanol 분획(100 $\mu$g/mL)에 의해서만 유의적으로 감소하였다(P<0.05). 회향 열매 추출물 및 분획물은 TNF-$\alpha$의 생성을 유의적으로 감소시켰으며 IL-6의 생성은 methanol extract(4~100 $\mu$g/mL), chloroform fraction(4 $\mu$g/mL), butanol fraction(4 and 100$\mu$g/mL) 및 aqueous fraction(4~100 $\mu$g/mL)에 의해 감소되었다(P<0.05). 이는 회향 열매 추출물은 염증 상태에서 유용할 것이며 COX-2와 iNOS를 억제하는 butanol 분획은 새로운 항염증제 개발에 사용될 수 있음을 시사하여 주었다.

강활추출물이 알레르기 천식 모델 생쥐에 기관지폐포세척액의 면역세포에 미치는 영향 (Effects of NR on Production Levels of Cytokines and Distribution of BAL Cells in Allergic Asthma)

  • 배진현;유지현;길기정
    • 대한본초학회지
    • /
    • 제25권1호
    • /
    • pp.33-38
    • /
    • 2010
  • Objectives : This study was designed to investigate therapeutic effects fo NR on allergic asthma in terms of measurement of cytokine profiles, distribution of BAL and expression levels of asthma induced by OVA. Methods : C57BL/6 mouse was divided into normal, NRI, control, and NRII, and Notopterygii Rhizoma Extract was orally administered to the C57BL/6 mice in the normal group and the normal mouse in NRI group while it was orally administered to the control group after inducing asthma by OVA and NRII. The study measured them by means of ELISA after dividing BALF of each group, and analyzed RT-PCR by using lung tissues. Results : In our results, lung weight and the number of total cells in the lung and of Leukocyte and Eosinophils in BALF were significantly decreased. In addition, IL-4, IL-5, IL-13, and IgE in BALF were significantly decreased compared to the control group. Conclusions : These results demonstrate that NR Extract be a desirable altemative therapy for allergic asthma by inhibiting the expressin of immune cells, the activation of inflammatory mediator.

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

  • Lee, Seung Eun;Park, Yong Seek
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.34-39
    • /
    • 2014
  • Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ${\alpha},{\beta}$-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ${\alpha},{\beta}$-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin Vepropidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.

Molecular Dissection of the Interaction between hBLT2 and the G Protein Alpha Subunits

  • Vukoti, Krishna Moorthy;Lee, Won-Kyu;Kim, Ho-Jun;Kim, Ick-Young;Yang, Eun-Gyeong;Lee, Cheol-Ju;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1005-1009
    • /
    • 2007
  • Leukotriene B4 (LTB4) is a potent chemoattractant for leukocytes and considered to be an inflammatory mediator. Human BLT2 (hBLT2) is a low-affinity G-protein coupled receptor for LTB4 and mediates pertussis toxin-sensitive chemotactic cell movement. Here, we dissected the interaction between hBLT2 and G-protein alpha subunits using GST fusion proteins containing intracellular regions of hBLT2 and various Gα protein including Gα i1, Gα i2, Gα i3, Gα s1, Gα o1, and Gα z. Among the tested Gα subunits, Gα i3 showed the highest binding to the third intracellular loop region of hBLT2 with a dissociation constant (KD) of 5.0 × 10?6 M. These results suggest that Gα i3 has the highest affinity to hBLT2, and the third intracellular loop region of hBLT2 is the major component for the interaction with Gα i3.

Production of Prostaglandin $E_2$ and $I_2$ is Coupled with Cyclooxygenase-2 in Human Follicular Dendritic Cells

  • Cho, Wha-Jung;Kim, Jin-I;Cho, Kyu-Bong;Choe, Jong-Seon
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.364-367
    • /
    • 2011
  • Background: Prostaglandins (PGs) play pathogenic and protective roles in inflammatory diseases. The novel concept of PGs as immune modulators is being documented by several investigators. By establishing an in vitro experimental model containing human follicular dendritic cell-like cells, HK cells, we reported that HK cells produce prostaglandin $E_2$ ($PGE_2$) and prostaglandin $I_2$ ($PGI_2$) and that these PGs regulate biological functions of T and B cells. Methods: To investigate the respective contribution of cyclooxygenase-1 (COX-1) and COX-2 to $PGE_2$ and $PGI_2$ production in HK cells, we performed siRNA technology to knock down COX enzymes and examined the effect on PG production. Results: Both $PGE_2$ and $PGI_2$ productions were almost completely inhibited by the depletion of COX-2. In contrast, COX-1 knockdown did not significantly affect PG production induced by lipopolysaccharide (LPS). Conclusion: The current results suggest that mPGES-1 and PGIS are coupled with COX-2 but not with COX-1 in human follicular dendritic cell (FDC) and may help understand the potential effects of selective COX inhibitors on the humoral immunity.

Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

  • Kim, Mi-Kyoung;Park, Hyun-Joo;Kim, Su-Ryun;Choi, Yoon Kyung;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.327-334
    • /
    • 2015
  • The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin- A-induced angiogenesis in vivo and ex vivo. Orexin-A-stimulated endothelial tube formation and chemotactic activity were also blocked in SnPP-treated vascular endothelial cells. Orexin-A treatment increased the expression of nuclear factor erythroid-derived 2 related factor 2 (Nrf2), and antioxidant response element (ARE) luciferase activity, leading to induction of HO-1. Collectively, these findings indicate that HO-1 plays a role as an important mediator of orexin-A-induced angiogenesis, and provide new possibilities for therapeutic approaches in pathophysiological conditions associated with angiogenesis.