• Title/Summary/Keyword: Inflammatory mediator

Search Result 208, Processing Time 0.023 seconds

ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells (BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Park, Hae-Jeong;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses

  • Jung, Byeongjin;Kang, Hyejin;Lee, Wonhwa;Noh, Hyun Jin;Kim, You-Sun;Han, Min-Su;Baek, Moon-Chang;Kim, Jaehong;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.214-219
    • /
    • 2016
  • A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway.

Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide

  • Choi, E.Y.;Lee, S.S.;Hyeon, J.Y.;Choe, S.H.;Keum, B.R.;Lim, J.M.;Park, D.C.;Choi, I.S.;Cho, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1664-1674
    • /
    • 2016
  • This research analyzed the effect of ${\beta}$-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS) of Escherichia. The incubated layer was used for a nitric oxide (NO) analysis. The DNA-binding activation of the small unit of nuclear factor-${\kappa}B$ was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli) LPS, the ${\beta}$-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS)-derived NO. ${\beta}$-Glucan increased the expression of the heme oxygenase-1 (HO-1) in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP). This shows that the NO production induced by LPS is related to the inhibition effect of ${\beta}$-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK) and the p38 induced by the LPS were not influenced by the ${\beta}$-glucan, and the inhibitory ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) decomposition was not influenced either. Instead, ${\beta}$-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1) that was induced by the E. coli LPS. Overall, the ${\beta}$-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E. coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by ${\beta}$-glucan weakens the progress of the inflammatory disease, ${\beta}$-glucan can be used as an effective immunomodulator.

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon;Jin, Hyun Chul;Kang, Ki Sung;Chang, Tong-Shin;Hwang, Gwi Seo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

Screening of Leukotriene $B_4$ Receptor Antagonist Activity from the Herbal Drugs (생약의 류코트리엔 $B_4$ 수용체결합 저해작용 검색)

  • Lee, Hwa-Jin;Ryu, Jae-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.3
    • /
    • pp.273-279
    • /
    • 2000
  • Leukotriene $B_4\;(LTB_4)$ is a pro-inflammatory mediator synthesized in myeloid cells from arachidonic acid. Elevated levels of $LTB_4$ have been found in a number of inflammatory diseases and levels are related to disease activity in some of these. Because $LTB_4$ interacts with cells through specific cell surface receptors, $LTB_4$ receptor blockade is the most specific approach to reduce the pathogenic role of $LTB_4$. In order to find $LTB_4$ receptor antagonist from plants, we screened the $LTB_4$ receptor antagonistic activity of the methanol extract and solvent fractions of herbal drugs. The ability of samples to inhibit specific binding of $[^3H]-LTB_4$ to human peripheral neutrophils was used as assay to evaluate the antagonistic activity of plant materials. Among the tested methanol extracts of herbal drugs, Mori Radicis Cortex, Perillae Semen, Armeniacae Semen and Sophorae subprostratae Radix showed potent inhibitory activity above 70% at the concentration of $100\;{mu}g/ml$. The inhibitory activities of $LTB_4$ binding to human neutrophils were evaluated for several solvent fractions at three different concentrations. Especially, hexane soluble fractions of Anemarrhenae Rhizoma and Embeliae Radix, and ethyl acetate soluble fractions of Aristolochiae Fructus, Magnoliae Cortex and Zingiberis Rhizoma crudus showed moderate activity at $25\;{mu}g/ml$. These fractions were promising candidates for the study of the activity-guided chromatographic purification of active compounds. Silica gel column chromatography of hexane soluble fractions of Anemarrhenae Rhizoma and Embeliae Radix gave very active sub-fractions, AA-4 and ES-4, and their inhibition activities of $LTB_4$ binding to human neutrophil at $30\;{mu}g/ml$ were 78% and 62%, respectively. From these results we could anticipate new $LTB_4$ receptor antagonist from herbal drugs, and the block of $LTB_4$ effects may provide beneficial in neutrophil mediated diseases such as inflammation and bronchial asthma.

  • PDF

Diclofenac Inhibits $IFN-{\gamma}$ Plus Lipopolysaccharide-Induced iNOS Gene Expression via Suppression of $NF-{\kappa}B$ Activation in RAW 264.7 Macrophages

  • Bae, So-Hyun;Ryu, Young-Sue;Hong, Jang-Hee;Park, Jin-Chan;Kim, Yong-Man;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.521-527
    • /
    • 2001
  • Diclofenac, a phenylacetic acid derivative, is a widely used non-steroidal anti-inflammatory drug (NSAID) to provide effective relief of inflammation and pain. Nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation. We examined the inhibitory effects of diclofenac on the induction of iNOS in RAW 264.7 macrophages which were activated with lipopolysaccharide (LPS) plus interferon-gamma $(IFN-{\gamma}).$ Treatment of RAW 264.7 cells with diclofenac and other NSAIDs (aspirin and indomethacin) significantly inhibited NO production and iNOS protein expression induced by LPS plus $IFN-{\gamma}.$ Also, diclofenac but not aspirin and indomethacin, inhibited iNOS mRNA expression and nuclear factor-kappa B $(NF-{\kappa}B)$ binding activity concentration-dependently. Furthermore, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that only diclofenac inhibited the iNOS promoter activity induced by LPS plus $IFN-{\gamma}$ through the $NF-{\kappa}B$ sites of iNOS promoter. Taken together, these suggest that diclofenac may exert its anti-inflammatory effect by inhibiting iNOS gene expression at the transcriptional level through suppression of $NF-{\kappa}B$ activation.

  • PDF

Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

  • Choi, Sujeong;Kwon, Hyon-Jo;Song, Hee-Jung;Choi, Si Wan;Nagar, Harsha;Piao, Shuyu;Jung, Saet-byel;Jeon, Byeong Hwa;Kim, Dong Woon;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.539-545
    • /
    • 2016
  • Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

  • Park, Donghwan;Ro, MyungJa;Lee, A-Jin;Kwak, Dong-Wook;Chung, Yunro;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.893-899
    • /
    • 2021
  • BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

Cosmeceutical Properties of Fructan (Levan) Produced by Zymomonas mobilis

  • Kim, K. H.;C. S. Han;K. I. Ko;E. K. Yang;Kim, C. H.;Park, S. N.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.700-718
    • /
    • 2003
  • Fructan, a polysaccharide existing in plants or produced by microorganisms, is a sugar polymer of fructose with $\beta$-2,6 linkages. In this study, we investigated some cosmeceutical properties of Fructan such as moisturizing effect, cell proliferation effect, anti-inflammation effect and cell cytotoxicity. Zymomonas mobilis, a microorganism producing Fructan, was cultured in a medium containing 10% sucrose and 2% yeast extract as main components for 24 hours at 37$^{\circ}C$ and pH 7. Fructan was obtained by precipitation from the cultured medium by adding alcohol (alcohol ratio of 1:3) after removing the enzyme by centrifuging. Fructan exhibited almost same moisturizing effect as hyaluronic acid and cell proliferation effect on human fibroblast and keratinocyte as well. Moreover, on cell proliferation test on bio-artificial skin constructed by 3-dimensional(3-D) culture after inducing primary skin inflammation with 0.5% sodium lauryl sulfate (SLS), the 3-D artificial skin treated with 0.01 mg/ml, 0.05mg/ml of Fructan exhibited higher cell proliferation than the 3-D artificial skin treated with SLS only. On anti-inflammation test on 3-D artificial skin evaluated by measuring secreted quantity of interleukin-1$\alpha$ (IL-1$\alpha$) which is a pre-inflammatory mediator induced by SLS, the quantity of IL-1$\alpha$on the 3-D artificial skin treated with 0.01 mg/ml, 0.05mg/ml of Fructan was less than the one on the 3-D artificial skin treated with SLS only. As a result of these studies, Fructan has anti-inflammation effect against inflammatory reaction by a skin irritant as well as cell proliferation effect in bio-artificial skin. Fructan was also evaluated as a safe material without any toxicity in safety tests using fibroblasts and animals.

  • PDF

In vitro investigation of the antibacterial and anti-inflammatory effects of LED irradiation

  • Jungwon Lee;Hyun-Yong Song;Sun-Hee Ahn;Woosub Song;Yang-Jo Seol;Yong-Moo Lee;Ki-Tae Koo
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • Purpose: This study aimed to investigate the proper wavelengths for safe levels of light-emitting diode (LED) irradiation with bactericidal and photobiomodulation effects in vitro. Methods: Cell viability tests of fibroblasts and osteoblasts after LED irradiation at 470, 525, 590, 630, and 850 nm were performed using the thiazolyl blue tetrazolium bromide assay. The bactericidal effect of 470-nm LED irradiation was analyzed with Streptococcus gordonii, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia. Levels of nitric oxide, a proinflammatory mediator, were measured to identify the anti-inflammatory effect of LED irradiation on lipopolysaccharide-stimulated inflammation in RAW 264.7 macrophages. Results: LED irradiation at wavelengths of 470, 525, 590, 630, and 850 nm showed no cytotoxic effect on fibroblasts and osteoblasts. LED irradiation at 630 and 850 nm led to fibroblast proliferation compared to no LED irradiation. LED irradiation at 470 nm resulted in bactericidal effects on S. gordonii, A. actinomycetemcomitans, F. nucleatum, P. gingivalis, and T. forsythia. Lipopolysaccharide (LPS)-induced RAW 264.7 inflammation was reduced by irradiation with 525-nm LED before LPS treatment and irradiation with 630-nm LED after LPS treatment; however, the effects were limited. Conclusions: LED irradiation at 470 nm showed bactericidal effects, while LED irradiation at 525 and 630 nm showed preventive and treatment effects on LPS-induced RAW 264.7 inflammation. The application of LED irradiation has potential as an adjuvant in periodontal therapy, although further investigations should be performed in vivo.