• 제목/요약/키워드: Inflammatory gene expression

검색결과 710건 처리시간 0.025초

유산균 생산 후 폐기되는 부산물 첨가 사료의 급이가 잉어(Cyprinus carpio)의 성장률, 선천성 면역, 면역연관 유전자 발현 및 항균효과에 미치는 영향 (Effects of dietary by-products discarded after probiotics production (BPPP) on growth performance, innate immunity, immune gene expression, and disease resistance against Edwardsiella tarda in carp, Cyprinus carpio)

  • 최재혁;정상목;양은총;장태원;이찬흔;박관하;최상훈
    • 한국어병학회지
    • /
    • 제35권1호
    • /
    • pp.103-111
    • /
    • 2022
  • This study has been performed to investigate the potential effects of by-product discarded after probiotics production (BPPP) on growth performance, immune gene expression, innate-immunity status, and disease resistance of carp, Cyprinus carpio. For 3 weeks, carp were fed four diets containing different levels of BPPP at 0, 0.1, 0.2 and 0.5% per kg of normal diet. Every 7 days of feeding, immune-related gene expression, serum lysozyme activity and ACH50 were analyzed. Growth rates and challenge test with E. tarda were conducted after 3 weeks of BPPP feeding. Both lysozyme activity and ACH50 were significantly (p<0.05) increased in all BPPP supplemented groups compared to the control at every 7 day for 3 weeks of feeding trial. The gene expression of pro-inflammatory cytokines, IL-1β and TNF-α was significantly (p<0.05) up-regulated until 21 days of feeding in all groups except for 0.2% group on day 7 post feeding. The anti-inflammatory cytokine IL-10 gene expression was only significantly (p<0.05) increased in 0.1% group on day 7 and decreased (p<0.05) on day 14 in all BPPP supplemented groups. On day 21, the IL-10 gene expression was augmented (p<0.05) in all groups. SOD gene expression was significantly (p<0.05) increased compared to the control on day 14 and 21 post feeding, whereas no significant difference was observed on day 7. In challenging test, 0.2%, 0.1%, 0.5% and control group showed 80%, 70%, 60% and 40% of survival rate, respectively. Feed conversion rate was only improved in 0.5% group. In conclusion, the present study indicates that dietary BPPP suplementation improved growth performance, innate immune response and bactericidal activity in carp.

Role of Salvia miltiorrhiza for Modulation of Th2-derived Cytokines in the Resolution of Inflammation

  • Moon, Sun-Hee;Shin, Seul-Mee;Kim, Seul-Ah;Oh, Hee-Eun;Han, Shin-Ha;Lee, Seung-Jeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.288-298
    • /
    • 2011
  • Background: Salvia miltiorrhiza (SM) has been used to treat inflammatory diseases including edema and arthritis; however, the anti-inflammatory mechanism of SM action remains unresolved. Methods: The effects of an ethanol extract of SM (ESM) on pro-inflammatory cytokines such as TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO, and on anti-inflammatory cytokines including IL-4, IL-10, TGF-${\beta}$, and IL-1Ra have been studied in an attempt to elucidate the anti-inflammatory mechanism in murine macrophages. Results: ESM inhibited the production of pro-inflammatory cytokines via down-regulation of gene and protein expression whereas it increased the anti-inflammatory cytokines. Furthermore, ESM inhibited the expression of the chemokines, RANTES and CX3CL1, as well as of inflammatory mediators such as TLR-4 and $11{\beta}$-HSD1. Conclusion: These results indicated that the regulatory effects of ESM may be mediated though the suppression of pro-inflammatory cytokines as well as the induction of anti-inflammatory cytokines. Consequently, we speculate that ESM has therapeutic potential for inflammation-associated disorders.

Streptozotocin으로 당뇨가 유도된 C57BL/6 생쥐 지방조직에서의 염증성 사이토카인 유전자의 이상발현 (Altered Gene Expression of Inflammatory Cytokines in Adipose Tissue of Streptozotocin-induced Diabetic C57BL/6 Mice)

  • 이용호;김종봉
    • 생명과학회지
    • /
    • 제23권6호
    • /
    • pp.825-831
    • /
    • 2013
  • 본 연구를 통하여 streptozotocin 주사에 의한 당뇨 유발이 일반식이와 고지방식이로 키운 C57BL/6 수컷생쥐의 지방조직에서의 염증성 사이토카인 유전자 발현에 미치는 영향을 조사하였다. 네 그룹의 당뇨생쥐(일반식이 또는 고지방식이로 키운 16주령 또는 26주령 생쥐)와 네 그룹의 비당뇨 대조군을 포함한 모두 73마리의 생쥐가 이 실험에 사용되었다. Real-time PCR을 이용하여 지방조직에서의 tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)와 monocyte chemoattractant protein-1 (MCP-1)의 유전자 발현량을 측정한 결과, TNF-${\alpha}$ mRNA는 당뇨 유발에 의해 증가하는 양상을 보였다. 특히, 16주령의 일반식이 생쥐의 경우 비당뇨 대조군에 비해 당뇨가 유발된 실험군에서 유의한 증가가 관찰되었다. MCP-1 mRNA 발현은 STZ처리에 따른 당뇨유발에 의해 감소하는 경향을 나타내었다. 특히, 16주령 고지방식이의 당뇨 실험군에서의 발현이 비당뇨 대조군에서의 발현량의 26%에 해당할 정도로 큰 감소를 나타내었다. 또한, MCP-1의 발현은 인슐린 농도와 유의한 상관관계가 있음이 확인되었다. 이들 실험결과는 당뇨 모델 생쥐에서 지방조직의 염증성 사이토카인이 이상발현되고 있음을 나타내며, 비만, 인슐린저항성, 및 당뇨에서의 저준위 염증상태와 지방조직에서의 염증성 사이토카인 발현 조절의 기작을 밝히는데 유용한 정보를 제공할 것으로 기대된다.

Screening of Differentially Expressed Genes Related to Bladder Cancer and Functional Analysis with DNA Microarray

  • Huang, Yi-Dong;Shan, Wei;Zeng, Li;Wu, Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4553-4557
    • /
    • 2013
  • Objective: The purpose of this study was to identify genes related to bladder cancer with samples from normal and disease cases by microarray chip. Methods: After downloading the gene expression profile GSE3167 from Gene Expression Omnibus database which includes 50 bladder samples, comprising 9 normal and 41 disease samples, differentially expressed genes were identified with packages in R language. The selected differentially expressed genes were further analyzed using bioinformatics methods. Firstly, molecular functions, biological processes and cell component analysis were researched by software Gestalt. Then, software String was used to search interaction relationships among differentially expressed genes, and hub genes of the network were selected. Finally, by using plugins of software Cytoscape, Mcode and Bingo, module analysis of hub-genes was performed. Results: A total of 221 genes were identified as differentially expressed by comparing normal and disease bladder samples, and a network as well as the hub gene C1QBP was obtained from the network. The C1QBP module had the closest relationship to production of molecular mediators involved in inflammatory responses. Conclusion: We obtained differentially expressed genes of bladder cancer by microarray, and both PRDX2 and YWHAZ in the module with hub gene C1QBP were most significantly related to production of molecular mediators involved in inflammatory responses. From knowledge of inflammatory responses and cancer, our results showed that, the hub gene and its module could induce inflammation in bladder cancer. These related genes are candidate bio-markers for bladder cancer diagnosis and might be helpful in designing novel therapies.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

Pyunkang-hwan (Pyunkang-tang) Regulates Hypersecretion of Pulmonary Mucin from Rats with Sulfur Dioxide-Induced Bronchitis and Production and Gene Expression of MUC5AC Mucin from Human Airway Epithelial Cells

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • 제20권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pyunkang-hwan (Pyunkang-tang) extract (PGT) is a traditional folk medicine for controlling diverse pulmonary diseases including bronchitis, tonsiltis and pneumonitis. We investigated whether PGT significantly affects secretion, production and gene expression of airway mucin using in vivo and in vitro experimental models reflecting the hypersecretion and/or hyperproduction of mucus observed in inflammatory pulmonary diseases. For in vivo experiment, effect of PGT was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. For in vitro experiment, confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$) for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) PGT inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$ from NCI-H292 cells, respectively; (2) PGT also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells, respectively; (3) PGT inhibited secretion of mucin in sulfur dioxide-induced bronchitis rat model. This result suggests that PGT can regulate secretion, production and gene expression of airway mucin.

Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice

  • Lee, Jeonggeun;Park, Joonwoo;Lee, Yong Yook;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.519-526
    • /
    • 2020
  • Background: Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods: The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database-based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results: We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)-derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion: Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.

Gene expression profiling after ochratoxin A treatment in small intestinal epithelial cells from pigs

  • Jung Woong, Yoon;Sang In, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.842-853
    • /
    • 2022
  • Ochratoxin A (OTA) is a well-known mycotoxin that causes disease through the ingestion of contaminated food or feed, for example, in the porcine industry. The intestinal epithelium acts as the first barrier against food contamination. We conducted a study on the exposure of the porcine intestinal epithelium to OTA. We used the intestinal porcine epithelial cell line IPEC-J2 as an in vitro model to evaluate the altered molecular mechanisms following OTA exposure. Gene expression profiling revealed that OTA upregulated 782 genes and downregulated 896, totalling 1678 differentially expressed genes. Furthermore, immunofluorescence, quantitative real-time polymerase chain reaction, and western blotting confirmed that OTA damages the tight junction protein ZO-1. Moreover, OTA activated the expression of inflammatory genes (IL-6, IL-8, IL-10, NF-kB, TLR4, and TNF-α). In summary, this study confirmed that OTA alters various molecular mechanisms and has several adverse effects on IPEC-J2 cells.