• Title/Summary/Keyword: Inflammatory diseases

Search Result 2,332, Processing Time 0.03 seconds

A Case of Dissection and Resuture Performed at the Department of Korean Medicine for Excessive Granulation Tissue Caused by Suturing Failure (봉합 실패로 발생된 과다 육아조직에 대해 한의과에서 시행한 절제 및 재봉합 증례)

  • Eun-na Heo;Kang Kwon;Hyung-Sik Seo
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.4
    • /
    • pp.181-186
    • /
    • 2023
  • Objectives : The purpose of this study is to report case of hypergranulation tissue that occurred after laparotomy and dissected by CO2 laser. Methods : A 72-year-old female had hypergranulation tissue on the epigastrium. Local anesthesia was achieved with bufonis venenum pharmacopuncture. The CO2 laser was used for dissection. After removal of granulation, irrigation with soyeom pharmacopuncture solution and simple interrupted suture were performed. Yeonkyopaedok-san were administered for 7 days and the suture was removed after 14 days. At last, saengkigo was applied. Results : Hypergranulation tissue sized 1.0×1.0×1.0cm was clearly removed. Including excessive growing of granulation tissue, adverse effects were not reported until the clear skin adhesion. Conclusions : Hypergranulation tissue was surgically removed and sutured completely without any complications by using pharmacopuncture, oral herbal medicine and ointment that have anti-inflammatory effects and wound healing. Through this study, it is hoped that surgery including suture will be actively performed in more diverse diseases in the Korean medicine community.

Evaluation of Cell Based Anti-oxidation Assay of Functional Components Derived from Domestic Major Potato Varieties

  • Jung Hwan Nam;Su Young Hong;Su Jeong Kim;Hwang Bae Sohn;Yul Ho Kim;Kyung Tea Lee;Soo jin Park;Jae Kwon Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.75-75
    • /
    • 2020
  • Potatoes were first introduced outside the Andes region four centuries ago, and have become an integral part of much of the world's food. Potatoes were first introduced into Europe in the 16th century and Korea in the early 19th century. Potatoes have a short growing season, high production per unit area, relatively strong environmental adaptability, and are cultivated in more than 130 countries around the world. It is the world's fourth-largest crop, following rice, wheat, bean and maize. In the nutritional aspects, potatoes contain abundant vitamins and minerals, as well as an assortment of phytochemicals such as carotenoids and natural phenols. Due to the high content of potato functional compounds, it has known that potatoes are effective in the prevention of various human diseases. In particular, the potato contains a large amount of polar compounds, including the saponin in the polar compounds, and the physiological activity of the saponins, such as immunity enhancement, antioxidant and anti-inflammatory is known. In this study, the antioxidative activity of polar compounds from five potatoes was examined by cell based anti-oxidation assay. The smallest amount of ROS(Reactive oxygen species) was generated when the compound was derived from 'Haryung' and 'hongyoung' and strong SOD(Superoxide dismutase) activity was observed in 'Sumi' and 'Jayoung'. The results of this study reveal the antioxidative effect of polar compounds extracted from various kind of potatoes, which will enable the acquisition of new bioactive candidates and the establishment of new profit generation models for farmers

  • PDF

Probiotic supplementation has sex-dependent effects on immune responses in association with the gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial

  • Chong-Su Kim;Min Ho Jung;Eun Young Choi;Dong-Mi Shin
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.883-898
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Probiotics have been suggested as potent modulators of age-related disorders in immunological functions, yet little is known about sex-dependent effects of probiotic supplements. Therefore, we aimed to investigate sex-dependent effects of probiotics on profiles of the gut microbiota and peripheral immune cells in healthy older adults. SUBJECTS/METHODS: In a randomized, double-blind, placebo-controlled, multicenter trial, healthy elderly individuals ≥ 65 yrs old were administered probiotic capsules (or placebo) for 12 wk. Gut microbiota was analyzed using 16S rRNA gene sequencing and bioinformatic analyses. Peripheral immune cells were profiled using flow cytometry for lymphocytes (natural killer, B, CD4+ T, and CD8+ T cells), dendritic cells, monocytes, and their subpopulations. RESULTS: Compared with placebo, phylum Firmicutes was significantly reduced in the probiotic group in women, but not in men. At the genus level, sex-specific responses included reductions in the relative abundances of pro-inflammatory gut microbes, including Catabacter and unclassified_Coriobacteriales, and Burkholderia and unclassified Enterobacteriaceae, in men and women, respectively. Peripheral immune cell profiling analysis revealed that in men, probiotics significantly reduced the proportions of dendritic cells and CD14+ CD16- monocytes; however, these effects were not observed in women. In contrast, the proportion of total CD4+ T cells was significantly reduced in women in the probiotic group. Additionally, serum lipopolysaccharide-binding protein levels showed a decreasing tendency that were positively associated with changes in gut bacteria, including Catabacter (ρ = 0.678, P < 0.05) and Burkholderia (ρ = 0.673, P < 0.05) in men and women, respectively. CONCLUSIONS: These results suggest that probiotic supplementation may reduce the incidence of inflammation-related diseases by regulating the profiles of the gut microbiota and peripheral immune cells in healthy elders in a sex-specific manner.

Usefulness of p16INK4a Immunocytochemical staining for the Differentiation between Atrophy and ASCUS in Diagnosis of Uterine Cervical Cancer

  • Hye Ryoung Shin;Taekil Eom;Wan-Su Choi
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.144-151
    • /
    • 2023
  • A Pap smear is the most important screening test for the diagnosis of cervical cancer. However, subjective judgment by the operator cannot be excluded, and replicability may greatly be reduced if uncertain specimens are examined. Examiners often experience difficulties in differentiating atrophy with inflammatory changes and ASCUS when diagnosing squamous epithelial lesions from a pap smear. Reports often vary between cytologists and pathologists, and misdiagnosis may result in delayed follow-ups and advanced diseases. Hence, auxiliary examinations are necessary when confusing results between atrophy and ASCUS are obtained. The importance of p16INK4a activation due to HPV infection, which is an important factor in the outbreak of cervical cancer, has been highlighted. Recent studies have reported that p16INK4a immunocytochemical staining and HPV high-risk type tests using liquid-based cervical specimens are effective to detect the presence of lesions of grade HSIL or higher in patients with ASC-H. However, no research exists on the utility of HPV and p16INK4a tests on the differential diagnosis of atrophy and ASCUS. This study focused on whether p16INK4a immunocytochemical staining and HPV tests can help diagnose borderline lesions between atrophy and ASCUS. The results reported that p16INK4a activation can significantly (P<0.001) differentiate atrophy from ASCUS in atrophic lesions infected with High risk-HPV. Therefore, it may be concluded that p16INK4a immunocytochemical staining is an effective auxiliary test in lesions infected with HR-HPV when atrophic lesions are difficult to differentiate by morphology. Such results are expected to help decide on adequate follow-up and treatment.

Current Status and Application Prospects of Anti-Atherosclerotic Active Biomaterials (항동맥경화 활성 바이오소재 개발 연구 동향 및 활용 전망)

  • Seunghee Kim;Jeongho Lee;Hah Young Yoo
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Atherosclerosis, a disease with high morbidity and mortality worldwide, is a chronic inflammatory disease that is a major cause of cardiovascular diseases such as stroke and myocardial infarction. Atherosclerosis is characterized by the accumulation of lipid deposits in the arteries, forming atheromas. This leads to the narrowing of the arteries and thrombosis. Recently, the need to develop bio-derived anti-atherosclerotic materials has been highlighted with concerns about the side effects of synthetic therapeutics. Accordingly, related research (such as the discovery of biomaterials for the improvement and treatment of atherosclerosis and the identification of mechanisms) has been actively conducted. Biomaterials including polysaccharides, polyphenols, and coenzyme Q10 have been reported to inhibit or delay symptoms by modulating factors involved in the development of atherosclerosis. For biomaterials with superior activity, in vivo anti-atherosclerotic activity has been confirmed. In this review, the pathogenesis of atherosclerosis was investigated, and the current status and application prospects of biomaterials with anti-atherosclerotic activity were proposed.

Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis

  • Young eun Lee;Seung-Hyo Lee;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.10.1-10.17
    • /
    • 2024
  • In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.

Aged Sanroque Mice Spontaneously Develop Sjögren's Syndrome-like Disease

  • Suk San Choi;Eunkyeong Jang;Yeon-Kyung Oh;Kiseok Jang;Mi-La Cho;Sung-Hwan Park;Jeehee Youn
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2019
  • Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that affects mainly salivary and lacrimal glands, but its cause remains largely unknown. Clinical data indicating that SS occurs in a substantial proportion of patients with lupus points to common pathogenic mechanisms underlying the two diseases. To address this idea, we asked whether SS develops in the lupus-prone mouse strain sanroque (SAN). Owing to hyper-activation of follicular helper T (Tfh) cells, female SAN mice developed lupus-like symptoms at approximately 20 wk of age but there were no signs of SS at that time. However, symptoms typical of SS were evident at approximately 40 wk of age, as judged by reduced saliva flow rate, sialadenitis, and IgG deposits in the salivary glands. Increases in serum titers of SS-related autoantibodies and numbers of autoantibody-secreting cells in cervical lymph nodes (LNs) preceded the pathologic manifestations of SS and were accompanied by expansion of Tfh cells and their downstream effector cells. Thus, our results suggest that chronic dysregulation of Tfh cells in salivary gland-draining LNs is sufficient to drive the development of SS in lupus-prone mice.

Muscle Strength and Biochemical Markers as Predictors of Depression in Hemodialysis Patients: A Cross-Sectional Study

  • Soudabeh Zare;Motahareh Hasani;M. Dulce Estevao;Rahim Tahmasebi;Leila Azadbakht;Farzad Shidfar;Javad Heshmati;Somayeh Ziaei
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.293-303
    • /
    • 2023
  • Patients with chronic renal failure, many of which treated with hemodialysis, present a high prevalence of impaired muscle strength which suggest that muscle mass parameters may be used as markers for changes in muscle in these patients. Measurement of handgrip strength (HGS) is a common, simple, and quick measure of muscle function an indicator of overall muscle strength which has been associated with physical activity and several anthropometric traits. Intercellular adhesion molecule-1 (ICAM-1) and insulin-like growth factor-1 (IGF-1) are biochemical markers associated with inflammatory processes which are a common consequence of dialysis. Additionally, hemodialysis patients frequently present signs of malnutrition and depression. This cross-sectional study aimed to evaluate if muscle and biochemical markers could be used to predict the risk of depression in hemodialysis patients. Several anthropometric parameters, nutrient intake, depression state and the serum levels of ICAM-1 and IGF-1 were determined and Pearson's correlation coefficient and/or Spearman's correlation coefficient were used to test the correlation between them. Our results do not show a correlation between HGF, IGF-1 and ICAM-1 with the depression status of the patients, but mid-arm muscle circumference (MAMC) was statistically and positively correlated with depression. Additionally, ICAM-1 levels were negatively correlated with HGS, MAMC, and IGF-1. Overall, the results of the present study suggest that HGS may be used as an indicator of cardiovascular diseases and MAMC may be a good predictor of the level of depression in hemodialysis patients, although further studies are required.

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.77-83
    • /
    • 2024
  • Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.