Acknowledgement
본 연구는 2023학년도 상명대학교 교내연구비를 지원받아 수행하였음.
References
- Mc Namara, K., Alzubaidi, H. and Jackson, J. K., "Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?," Integr. Pharm. Res. Pract., 8, 1-11(2019).
- Stewart, J., Manmathan, G. and Wilkinson, P., "Primary Prevention of Cardiovascular Disease: A Review of Contemporary Guidance and Literature," Jrsm Cardiovasc. Dis., 6, 1-9(2017).
- Kim, J. M., Lee, W. S. and Kim, J., "Therapeutic Strategy for Atherosclerosis Based on Bone-vascular Axis Hypothesis," Pharmacol. Ther., 206, 107436(2020).
- Steenman, M. and Lande, G., "Cardiac Aging and Heart Disease in Humans," Biophys. Rev., 9(2), 131-137(2017). https://doi.org/10.1007/s12551-017-0255-9
- Mach, F., Ray, K. K., Wiklund, O., Corsini, A., Catapano, A. L., Bruckert, E., De Backer, G., Hegele, R. A., Hovingh, G.K. and Jacobson, T.A., "Adverse Effects of Statin Therapy: Perception vs. the Evidence-focus on Glucose Homeostasis, Cognitive, Renal and Hepatic Function, Haemorrhagic Stroke and Cataract," Eur. Heart J., 39(27), 2526-2539(2018).
- Volobueva, A., Zhang, D., Grechko, A. V. and Orekhov, A. N., "Foam Cell Formation and Cholesterol Trafficking and Metabolism Disturbances in Atherosclerosis," Cor Vasa, 61, 48-55(2018).
- Michel, C. C. and Curry, F. E., "Microvascular Permeability," Physiol. Rev., 79, 703-761(1999).
- Jang, E., Robert, J., Rohrer, L., von Eckardstein, A. and Lee, W. L., "Transendothelial Transport of Lipoproteins," Atherosclerosis, 315, 111-125(2020).
- Vos, D. Y. and van de Sluis, B., "Function of the Endolysosomal Network in Cholesterol Homeostasis and Metabolic-associated Fatty Liver Disease (MAFLD)," Mol. Metab., 50, 101146(2021).
- Levitan, I., Volkov, S. and Subbaiah, P. V., "Oxidized LDL: Diversity, Patterns of Recognition, and Pathophysiology," Antioxid. Redox Signal., 13(1), 39-75(2010).
- Galimberti, F., Casula, M. and Olmastroni, E., "Apolipoprotein B Compared with Low-density Lipoprotein Cholesterol in the Atherosclerotic Cardiovascular Diseases Risk Assessment," Pharmacol. Res., 195, 106873(2023).
- Ahmadi, A., Panahi, Y., Johnston, T. P. and Sahebkar, A., "Antidiabetic Drugs and Oxidized Low-density Lipoprotein: A Review of Anti-atherosclerotic Mechanisms," Pharmacol. Res., 172, 105819 (2021).
- Nachtigal, P., Semecky, V., Kopecky, M., Gojova, A., Solichova, D., Zdansky, P. and Zadak, Z., "Application of Stereological Methods for the Quantification of VCAM-1 and ICAM-1 Expression in Early Stages of Rabbit Atherogenesis," Pathol. Res. Pract., 200(3), 219-229(2004). https://doi.org/10.1016/j.prp.2004.02.008
- Lin, J., Kakkar, V. and Lu, X., "Impact of MCP-1 in Atherosclerosis," Curr. Pharm. Des., 20(28), 4580-4588(2014). https://doi.org/10.2174/1381612820666140522115801
- De Paoli, F., Staels, B. and Chinetti-Gbaguidi, G., "Macrophage Phenotypes and Their Modulation in Atherosclerosis," Circ. J., 78(8), 1775-1781(2014). https://doi.org/10.1253/circj.CJ-14-0621
- Hofnagel, O., Luechtenborg, B., Weissen-Plenz, G. and Robenek, H., "Statins and Foam Cell Formation: Impact on LDL Oxidation and Uptake of Oxidized Lipoproteins via Scavenger Receptors," Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1771(9), 1117-1124(2007).
- Chistiakov, D. A., Melnichenko, A. A., Myasoedova, V. A., Grechko, A. V. and Orekhov, A. N., "Mechanisms of Foam Cell Formation in Atherosclerosis," J. Mol. Med., 95(11), 1153-1165(2017). https://doi.org/10.1007/s00109-017-1575-8
- Williams, K. J. and Tabas, I., "Lipoprotein Retention-and Clues for Atheroma Regression," Arterioscler. Thromb. Vasc. Biol., 25(8), 1536-1540(2005). https://doi.org/10.1161/01.ATV.0000174795.62387.d3
- Vlacil, A. K., Schuett, J., Schieffer, B. and Grote, K., "Variety Matters: Diverse Functions of Monocyte Subtypes in Vascular Inflammation and Atherogenesis," Vasc. Pharmacol., 113, 9-19 (2019).
- Nording, H., Baron, L. and Langer, H. F., "Platelets as Therapeutic Targets to Prevent Atherosclerosis," Atherosclerosis, 307, 97-108(2020).
- Mitra, S., Deshmukh, A., Sachdeva, R., Lu, J. and Mehta, J. L., "Oxidized Low-density Lipoprotein and Atherosclerosis Implications in Antioxidant Therapy," Am. J. Med. Sci., 342(2), 135-142(2011). https://doi.org/10.1097/MAJ.0b013e318224a147
- Brown, R. A., Shantsila, E., Varma, C. and Lip, G. Y., "Current Understanding of Atherogenesis," Am. J. Med., 130(3), 268-282 (2017). https://doi.org/10.1016/j.amjmed.2016.10.022
- Maguire, E. M., Pearce, S. W. and Xiao, Q., "Foam Cell Formation: A New Target for Fighting Atherosclerosis and Cardiovascular Disease," Vascul. Pharmacol., 112, 54-71(2019).
- Yan, P., Xia, C., Duan, C., Li, S. and Mei, Z., "Biological Characteristics of Foam Cell Formation in Smooth Muscle Cells Derived From Bone Marrow Stem Cells," Int. J. Biol. Sci., 7(7), 937(2011).
- Sorokin, V., Vickneson, K., Kofidis, T., Woo, C. C., Lin, X. Y., Foo, R. and Shanahan, C. M., "Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation," Front. immunol., 11, 599415(2020).
- Sanson, M., Auge, N., Vindis, C., Muller, C., Bando, Y., Thiers, J. C., Marachet, M. A., Zarkovic, K., Sawa, Y., Salvayre, R. and Negre-Salvayre, A., "Oxidized Low-density Lipoproteins Trigger Endoplasmic Reticulum Stress in Vascular Cells: Prevention by Oxygen-regulated Protein 150 Expression," Circ. Res., 104(3), 328-336(2009).
- Cheng, H., Cheng, Q., Bao, X., Luo, Y., Zhou, Y., Li, Y., Hua, Q., Liu, W., Tang, S. Feng, D. and Luo, Z., "Over-activation of NMDA Receptors Promotes ABCA1 Degradation and Foam Cell Formation," Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1865(10), 158778(2020).
- Teng, N., Maghzal, G. J., Talib, J., Rashid, I., Lau, A. K. and Stocker, R., "The Roles of Myeloperoxidase in Coronary Artery Disease and Its Potential Implication in Plaque Rupture," Redox Rep., 22(2), 51-73(2017). https://doi.org/10.1080/13510002.2016.1256119
- Bentzon, J. F., Otsuka, F., Virmani, R. and Falk, E., "Mechanisms of Plaque Formation and Rupture," Circ. Res., 114(12), 1852-1866(2014). https://doi.org/10.1161/CIRCRESAHA.114.302721
- Watson, M. G., Byrne, H. M., Macaskill, C. and Myerscough, M. R., "A Two-phase Model of Early Fibrous Cap Formation in Atherosclerosis," J. Theor. Biol., 456, 123-136(2018).
- Glass, C. K. and Witztum, J. L. Atherosclerosis: the Road Ahead. Cell, 104(4), 503-516(2001).
- Huang, N. F., Okogbaa, J., Lee, J. C., Jha, A., Zaitseva, T. S., Paukshto, M. V., Sun, J. S., Punjya, N., Fuller, G. G. and Cooke, J. P., "The Modulation of Endothelial Cell Morphology, Function, and Survival Using Anisotropic Nanofibrillar Collagen Scaffolds," Biomaterials, 34(16), 4038-4047(2013). https://doi.org/10.1016/j.biomaterials.2013.02.036
- Cameron, J. N., Mehta, O. H., Michail, M., Chan, J., Nicholls, S. J., Bennett, M. R. and Brown, A. J., "Exploring the Relationship Between Biomechanical Stresses and Coronary Atherosclerosis," Atherosclerosis, 302, 43-51(2020).
- Chien, S., "Molecular and Mechanical Bases of Focal Lipid Accumulation in Arterial Wall," Prog. Biophys. Mol., 83(2), 131-151(2003). https://doi.org/10.1016/S0079-6107(03)00053-1
- Chiu, J. J., Lee, P. L., Chen, C. N., Lee, C. I., Chang, S. F., Chen, L. J., Lien, S. C., Ko., Y. C., Usami, S. and Chien, S., "Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-selectin Expressions Induced by Tumor Necrosis Factor-α in Endothelial Cells," Arter. Thromb. Vasc. Biol., 24(1), 73-79(2004). https://doi.org/10.1161/01.ATV.0000106321.63667.24
- Zhou, M., Yu, Y., Chen, R., Liu, X., Hu, Y., Ma, Z., Gao, L., Jian, W. and Wang, L. "Wall Shear Stress and Its Role in Atherosclerosis," Front. Cardiovasc. Med., 10, 1083547(2023).
- Williams, H., Johnson, J. L., Jackson, C. L., White, S. J. and George, S. J., "MMP-7 Mediates Cleavage of N-cadherin and Promotes Smooth Muscle Cell Apoptosis," Cardiovasc. Res., 87(1), 137-146(2010). https://doi.org/10.1093/cvr/cvq042
- Newby, A. C., "Proteinases and Plaque Rupture: Unblocking the Road to Translation," Curr. Opin. Lipidol., 25(5), 358-366(2014).
- Barascuk, N., Skjot-Arkil, H., Register, T. C., Larsen, L., Byrjalsen, I., Christiansen, C. and Karsdal, M. A., "Human Macrophage Foam Cells Degrade Atherosclerotic Plaques Through Cathepsin K Mediated Processes," BMC Cardiovasc. Disord., 10(1), 1-9(2010). https://doi.org/10.1186/1471-2261-10-19
- Luo, P. and Qiu, B., "The Role of Immune Cells in Pulmonary Hypertension: Focusing on Macrophages," Hum. Immunol., 83(2), 153-163(2022).
- Wen, G., Zhang, C., Chen, Q., Mustafa, A., Ye, S. and Xiao, Q., "A Novel Role of Matrix Metalloproteinase-8 in Macrophage Differentiation and Polarization," J. Biol. Chem., 290(31), 19158-19172(2015). https://doi.org/10.1074/jbc.M114.634022
- Liu, J., Guo, Z., Zhang, Y., Wu, T., Ma, Y., Lai, W. and Guo, Z., "LCK Inhibitor Attenuates Atherosclerosis in ApoE-/- mice via Regulating T Cell Differentiation and Reverse Cholesterol Transport," J. Mol. Cell. Cardiol., 139, 87-97(2020).
- Yan, A. and Gotlieb, A. I., "The Microenvironment of the Atheroma Expresses Phenotypes of Plaque Instability," Cardiovasc. Pathol., 107572(2023).
- Goikuria, H., Vandenbroeck, K. and Alloza, I., "Inflammation in Human Carotid Atheroma Plaques," Cytokine Growth Factor Rev., 39, 62-70(2018).
- Camare, C., Pucelle, M., Negre-Salvayre, A. and Salvayre, R., "Angiogenesis in the Atherosclerotic Plaque," Redox Biol., 12, 18-34(2017). https://doi.org/10.1016/j.redox.2017.01.007
- Perrotta, P., Veseli, B. E., Van der Veken, B., Roth, L., Martinet, W. and De Meyer, G. R., "Pharmacological Strategies to Inhibit Intra-plaque Angiogenesis in Atherosclerosis," Vasc. Pharmacol., 112, 72-78(2019). https://doi.org/10.1016/j.vph.2018.06.014
- Moreno, P. R., Purushothaman, M. and Purushothaman, K. R., "Plaque Neovascularization: Defense Mechanisms, Betrayal, or a War in Progress," Ann. N. Y. Acad. Sci., 1254(1), 7-17(2012).
- van Eif, V. W., Devalla, H. D., Boink, G. J. and Christoffels, V. M., "Transcriptional Regulation of the Cardiac Conduction System," Nat. Rev. Cardiol., 15(10), 617-630(2018). https://doi.org/10.1038/s41569-018-0031-y
- Lu, D. and Thum, T., "RNA-based Diagnostic and Therapeutic Strategies for Cardiovascular Disease," Nat. Rev. Cardiol., 16(11), 661-674(2019). https://doi.org/10.1038/s41569-019-0218-x
- Wang, Y., Chen, Y., Zhang, X., Lu, Y. and Chen, H., "New Insights in Intestinal Oxidative Stress Damage and the Health Intervention Effects of Nutrients: A Review," J. Funct. Food., 75, 104248(2020).
- Ighodaro, O. M. and Akinloye, O. A., "First Line Defence Antioxidants-superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid," Alex. J. Med., 54(4), 287-293(2018).
- Jo, J., Shin, S., Jung, H., Min, B., Kim, S. and Kim, J., "Process Development for Production of Antioxidants from Lipid Extracted Microalgae Using Ultrasonic-assisted Extraction," Korean Chem. Eng. Res., 55(4), 542-547(2017).
- Min, B., Han, Y., Lee, D., Jo, J., Jung, H. and Kim, J. W., "Optimization of Microwave-assisted Extraction Conditions for Production of Bioactive Material from Corn Stover," Korean Chem. Eng. Res., 56(1), 66-72(2018).
- Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G. and Serban, A. I., "Oxidative Stress Mitigation by Antioxidants-an Overview on Their Chemistry and Influences on Health Status," Eur. J. Med. Chem., 209, 112891(2020).
- Fallah, A. A., Sarmast, E. and Jafari, T. "Effect of Dietary Anthocyanins on Biomarkers of Oxidative Stress and Antioxidative Capacity: A Systematic Review and Meta-analysis of Randomized Controlled Trials," J. Funct. Food., 68, 103912(2020).
- Daiber, A. and Chlopicki, S., "Revisiting Pharmacology of Oxidative Stress and Endothelial Dysfunction in Cardiovascular Disease: Evidence for Redox-based Therapies," Free Radic. Biol. Med., 157, 15-37(2020).
- Yalameha, B., "Antioxidant Therapy to Improve or Resolve Atherosclerosis; New Hopes and Current Trends," J. Nephropharmacology, 8(2), e18-e18(2019). https://doi.org/10.15171/npj.2019.18
- Yoshida, H. and Kisugi, R., "Mechanisms of LDL Oxidation," Clin. Chim. Acta, 411(23-24), 1875-1882(2010). https://doi.org/10.1016/j.cca.2010.08.038
- Cyr, A. R., Huckaby, L. V., Shiva, S. S. and Zuckerbraun, B. S., "Nitric Oxide and Endothelial Dysfunction," Crit. Care Clin., 36(2), 307-321(2020). https://doi.org/10.1016/j.ccc.2019.12.009
- Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. and Borderie, D., "Antioxidant Effects of Resveratrol and Other Stilbene Derivatives on Oxidative Stress and NO Bioavailability: Potential Benefits to Cardiovascular Diseases," Biochimie, 94(2), 269-276 (2012).
- Gradinaru, D., Borsa, C., Ionescu, C. and Prada, G. I., "Oxidized LDL and NO Synthesis-biomarkers of Endothelial Dysfunction and Ageing," Mech. Ageing Dev., 151, 101-113(2015).
- Yang, X., Li, Y., Li, Y., Ren, X., Zhang, X., Hu, D., Gao, Y., Xing, Y. and Shang, H., "Oxidative Stress-mediated Atherosclerosis: Mechanisms and Therapies," Front. Physiol. 8, 600(2017).
- Schleicher, E. and Friess, U., "Oxidative Stress, AGE, and Atherosclerosis," Kidney Int., 72, S17-S26(2007). https://doi.org/10.1038/sj.ki.5002382
- Lee, M., Oh, S., Chu, C. H., Kim, Y. S., Na, I. C. and Park, K., "Enhancement of Membrane Durability in PEMFC by Fucoidan and Tannic Acid," Korean Chem. Eng. Res., 61(1), 45-51(2023).
- Zayed, A. and Ulber, R., "Fucoidan Production: Approval Key Challenges and Opportunities," Carbohydr. Polym., 211, 289-297 (2019).
- Pradhan, B., Patra, S., Nayak, R., Behera, C., Dash, S. R., Nayak, S., Sahu, B. B. and Jena, M., "Multifunctional Role of Fucoidan, Sulfated Polysaccharides in Human Health and Disease: A Journey Under the Sea in Pursuit of Potent Therapeutic Agents," Int. J. Biol. Macromol., 164, 4263-4278(2020).
- Mansour, M. B., Balti, R., Yacoubi, L., Ollivier, V., Chaubet, F. and Maaroufi, R. M., "Primary Structure and Anticoagulant Activity of Fucoidan From the Sea Cucumber Holothuria polii. Int. J. Biol. Macromol., 121, 1145-1153(2019).
- Pozharitskaya, O. N., Obluchinskaya, E. D. and Shikov, A. N., "Mechanisms of Bioactivities of Fucoidan From the Brown Seaweed Fucus vesiculosus L. of the Barents Sea," Mar. Drugs, 18(5), 275 (2020).
- Dutot, M., Grassin-Delyle, S., Salvator, H., Brollo, M., Rat, P., Fagon, R., Naline, E. and Devillier, P., "A Marine-sourced Fucoidan Solution Inhibits Toll-like-receptor-3-induced Cytokine Release by Human Bronchial Epithelial Cells," Int. J. Biol. Macromol., 130, 429-436(2019). https://doi.org/10.1016/j.ijbiomac.2019.02.113
- Yin, J., Wang, J., Li, F., Yang, Z., Yang, X., Sun, W., Xia, B., Li, T., Song, W. and Guo, S., "The Fucoidan From the Brown Seaweed Ascophyllum nodosum Ameliorates Atherosclerosis in Apolipoprotein E-deficient Mice," Food Funct., 10(8), 5124-5139(2019). https://doi.org/10.1039/C9FO00619B
- Novoyatleva, T., Kojonazarov, B., Owczarek, A., Veeroju, S., Rai, N., Henneke, I., Bohm, M., Grimminger, F., Ghofrani, H. A., Seeger, W., Weissmann, N. and Schermuly, R. T. "Evidence for the Fucoidan/P-selectin Axis as a Therapeutic Target in Hypoxia-induced Pulmonary Hypertension," Am. J. Respir. Crit. Care Med., 199(11), 1407-1420(2019). https://doi.org/10.1164/rccm.201806-1170OC
- Jayachandran, M., Chen, J., Chung, S. S. M. and Xu, B. "A Critical Review on the Impacts of β-glucans on Gut Microbiota and Human Health," J. Nutr. Biochem., 61, 101-110(2018).
- Bai, J., Ren, Y., Li, Y., Fan, M., Qian, H., Wang, L., Wu, G., Zhang, H., Qi, X., Xu, M. and Rao, Z., "Physiological Functionalities and Mechanisms of β-glucans," Trends Food Sci. Technol., 88, 57-66(2019).
- Gislette, T., Zhao, K. N., Gu, W. and Chen, J., "The Possible Mechanisms for β-glucans to Prevent Atherosclerotic Lesions," Curr. Bioact. Compd., 8(2), 146-150(2012). https://doi.org/10.2174/157340712801784796
- Wang, S., Zhou, H., Feng, T., Wu, R., Sun, X., Guan, N., Qu, L., Gao, Z., Yan, J., Nu, N. and Zhao, J., "β-glucan Attenuates Inflammatory Responses in Oxidized LDL-induced THP-1 Cells via the p38 MAPK Pathway," Nutr. Metab. Cardiovasc. Dis., 24(3), 248-255(2014). https://doi.org/10.1016/j.numecd.2013.09.019
- Aoki, S., Iwai, A., Kawata, K., Muramatsu, D., Uchiyama, H., Okabe, M., Ikesue, M., Maeda, N. and Uede, T., "Oral Administration of the β-glucan Produced by Aureobasidium pullulans Ameliorates Development of Atherosclerosis in Apolipoprotein E Deficient Mice," J. Funct. Foods, 18, 22-27(2015).
- Jiang, Y., Fu, C., Liu, G., Guo, J. and Su, Z., "Cholesterol-lowering Effects and Potential Mechanisms of Chitooligosaccharide Capsules in Hyperlipidemic Rats," Food Nutr. Res., 62(2018).
- Liang, S., Sun, Y. and Dai, X., "A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide," Int. J. Mol. Sci., 19(8), 2197(2018).
- Yang, D., Hu, C., Deng, X., Bai, Y., Cao, H., Guo, J. and Su, Z. Therapeutic Effect of Chitooligosaccharide Tablets on Lipids in High-fat Diets Induced Hyperlipidemic Rats," Molecules, 24(3), 514(2019).
- Kang, N. H., Lee, W. K., Yi, B. R., Lee, H. R., Park, M. A., Park, S. K., Park, H. K. and Choi, K. C., "Risk of Cardiovascular Disease is Suppressed by Dietary Supplementation with Protamine and Chitooligosaccharide in Sprague-Dawley Rats," Mol. Med. Rep., 7(1), 127-133(2013). https://doi.org/10.3892/mmr.2012.1128
- Phil, L., Naveed, M., Mohammad, I. S., Bo, L. and Bin, D., "Chitooligosaccharide: An Evaluation of Physicochemical and Biological Properties with the Proposition for Determination of Thermal Degradation Products," Biomed. Pharmacother., 102, 438-451(2018).
- Isemura, M., "Catechin in Human Health and Disease," Molecules, 24(3), 528(2019).
- Miura, Y., Chiba, T., Tomita, I., Koizumi, H., Miura, S., Umegaki, K., Hara, Y. and Ikeda, M., "Tea Catechins Prevent the Development of Atherosclerosis in Apoprotein E-deficient Mice," J. Nutr., 131(1), 27-32(2001). https://doi.org/10.1093/jn/131.1.27
- Suzuki, J. I., Isobe, M., Morishita, R. and Nagai, R., "Tea Polyphenols Regulate Key Mediators on Inflammatory Cardiovascular Diseases," Mediat. Inflamm., 2009, 494928(2009).
- Malekmohammad, K., Sewell, R. D. and Rafieian-Kopaei, M., "Antioxidants and Atherosclerosis: Mechanistic Aspects," Biomolecules, 9(8), 301(2019).
- Risuleo, G., in Gupta, R. C.(Ed.), Resveratrol: Multiple Activities on the Biological Functionality of the Cell. Academic Press, Boston, MA, USA, 453-464(2016).
- Poznyak, A. V., Grechko, A. V., Orekhova, V. A., Chegodaev, Y. S., Wu, W. K. and Orekhov, A. N., "Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment," Biology, 9(3), 60(2020).
- Zhou, L., Long, J., Sun, Y., Chen, W., Qiu, R. and Yuan, D., "Resveratrol Ameliorates Atherosclerosis Induced by High-fat Diet and LPS in ApoE-/- Mice and Inhibits the Activation of CD4+ T Cells," Nutr. Metab., 17, 1-12(2020).
- Figueira, L. and Gonzalez, J. C., "Effect of Resveratrol on Seric Vascular Endothelial Growth Factor Concentrations During Atherosclerosis," Clin. Invest. Arterioscler., 30(5), 209-216(2018). https://doi.org/10.1016/j.artere.2018.08.002
- Bonakdar, R. A. and Guarneri, E., "Coenzyme Q10," Am. Fam. Physician, 72(6), 1065-1070(2005).
- Flowers, N., Hartley, L., Todkill, D., Stranges, S. and Rees, K., "Co-enzyme Q10 Supplementation for the Primary Prevention of Cardiovascular Disease," Cochrane Database Syst Rev., (12), CD010405(2014).
- Ulla, A., Mohamed, M. K., Sikder, B., Rahman, A. T., Sumi, F. A., Hossain, M. Reza, H. M., Rahman, G. M. S. and Alam, M. A., "Coenzyme Q10 Prevents Oxidative Stress and Fibrosis in Isoprenaline Induced Cardiac Remodeling in Aged Rats," BMC Pharmacol. Toxicol., 18(1), 1-10(2017). https://doi.org/10.1186/s40360-017-0136-7
- Dludla, P. V., Nyambuya, T. M., Orlando, P., Silvestri, S., Mxinwa, V., Mokgalaboni, K., Nkambule, B. B., Louw, J., Muller, C. J. F. and Tiano, L., "The Impact of Coenzyme Q10 on Metabolic and Cardiovascular Disease Profiles in Diabetic Patients: A Systematic Review and Meta-analysis of Randomized Controlled Trials," Endocrinol. Diabetes Metab., 3, e00118(2020).