• 제목/요약/키워드: Inflammatory Mediators

검색결과 831건 처리시간 0.029초

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.

해수산 클로렐라(Chlorella ellipsoidea) 유기용매 추출물의 항염증 효과 (Anti-Inflammatory Effect of Chlorella ellipsoidea Extracted from Seawater by Organic Solvents)

  • 최유진;조월순;김현지;남병혁;강은영;오수정;이계안;정민호
    • 한국수산과학회지
    • /
    • 제43권1호
    • /
    • pp.39-45
    • /
    • 2010
  • Chlorella has been reported to have certain beneficial physiological effects, including hypocholesterolemic, antihypertensive, antioxidative, and anti-tumor activities in animal and human studies. The aim of this study was to determine the anti-inflammatory activities of an 80% methanol extract(CE-Met), hexane fraction (CE-Hex), and ethyl acetate fraction (CE-EA) of Chlorella ellipsoidea in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage. Treatment with various concentrations of the C. ellipsoidea extract resulted m a significant, dose-dependent reduction in nitric oxide (NO) production by LPS-induced macrophages. The C. ellipsoidea extract significantly inhibited LPS-induced NO production accompanied by an attenuation of IL-6 and TNF-$\alpha$ formation in macrophages. These results suggest potent inhibit이y effects on the production of inflammatory mediators by a C. ellipsoidea extract. Thus, C. ellipsoidea extract may be a potent anti-inflammatory agent for troubled skin.

한련초(旱蓮草) 추출물의 항염증 효과 (Anti-inflammatory effects of the water extract of Ecliptae Herba)

  • 조희창;정호준;김상찬;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제23권2호
    • /
    • pp.125-138
    • /
    • 2010
  • Objective : The present study was examined to evaluate the effects of Ecliptae Herba on the production of inflammatory mediators in vivo and in vitro. Methods : In cell viability, all three doses of Ecliptae Herba extract (25, 50 and $100\;{\mu}g/ml$) had no significant cytotoxicity during the experimental period. The increases of NO production and iNOS expression were detected in LPS-activated cells compared to control, but these increases were dose-dependently attenuated by pre-treatment with Ecliptae Herba extract. Results : 1. LPS plays a pivotal roles in inducing to the massive production of pro-inflammatory cytokines such as TNF-$\alpha$, IL-$1{\beta}$ and IL-6 in macrophages. 2. Ecliptae Herba extract reduced the elevated production of cytokines by LPS. 3. Ecliptae Herba extract reduced $PGE_2$ levels in a dose-dependent manner as a consequence of inhibition of COX-2 activity. 4. Ecliptae Herba extract significantly reduced the nuclear translocation of $NF-{\kappa}B$ induced by LPS. 5. In histopathological study, Ecliptae Herba effectively inhibited the increases of hind paw edema, skin thicknesses and inflammatory cell infiltrations induced by carrageenan treatment. Conclusions : These results provide evidences that therapeutic effect of Ecliptae Herba on the acute inflammation is partly due to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of $NF-{\kappa}B$.

가미소요산 전탕팩의 보관 온도 및 기간에 따른 지표 성분 함량 및 항염증 효능 비교 연구 (Comparative study on the contents of marker compounds and anti-inflammatory effects of Gamisoyo-san decoction according to storage temperature and periods)

  • 진성은;서창섭;이나리;신현규;하혜경
    • 대한한의학회지
    • /
    • 제39권1호
    • /
    • pp.22-34
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate changes of the marker compounds and anti-inflammatory effect of Gamisoyo-san decoction (GMSYS) depending on storage temperature and periods. Methods: GMSYS was stored at room temperature or refrigeration for 12 months. According to storage temperature and periods, pH and sugar content of GMSYS were measured. To determine the marker compounds of GMSYS, high-performance liquid chromatography analysis was performed. To estimate the anti-inflammatory effect of GMSYS, LPS-induced pro-inflammatory mediators and cytokines were measured in RAW 264.7 cells. Results: There was no change in pH and sugar content depending on storage temperature and periods of GMSYS. The contents of gallic acid and mangiferin in both of room temperature and refrigerated decoctions reduced with increasing storage periods. Chlorogenic acid was time-dependently decreased in case of stored at room temperature. GMSYS significantly inhibited the LPS-induced production of nitric oxide, prostaglandin $E_2$ ($PGE_2$) and IL-6 in RAW 264.7 cells. These effects equally maintained up to 3 months at both of room temperature and refrigeration. Since 4 months, the inhibitory effect of GMSYS on LPS-induced $PGE_2$ production was time-dependently reduced, and the decrease in $PGE_2$ inhibitory effect of decoction stored at refrigeration was lower than that of stored at room temperature. Conclusions: Our results indicate that the anti-inflammatory effect of GMSYS are maintained up to 12 months, but it shows optimal efficacy up to 3 months. It is recommended to store in a refrigeration for short periods since some components decrease as storage periods becomes longer.

Anti-Inflammatory Mode of Isoflavone Glycoside Sophoricoside by Inhibition of Interleukin-6 and Cyclooxygenase-2 in Inflammatory Response

  • Kim, Byung-Hak;Chung, Eun-Yong;Ryu, Jae-Chun;Jung, Sang-Hun;Min, Kyung-Rak;Kim, Youngsoo
    • Archives of Pharmacal Research
    • /
    • 제26권4호
    • /
    • pp.306-311
    • /
    • 2003
  • Soy, high dietary intake for the oriental population, is a main source of isoflavonoids. Sophoricoside (SOP) an isoflavone glycoside was isolated from immature fruits of Sophora japonica (Leguminosae family) and its inhibitory effect on chemical mediators involved in inflammatory response was investigated in this study. SOP inhibited the interleukin (IL)-6 bioactivity with an $IC_{50}$ value of 6.1 $\mu$M whereas it had no effects on IL-1$\beta$ and TNF-a bioactivities. SOP was identified as a selective inhibitor of cyclooxygenase (COX)-2 activity with an $IC_{50}$ value of 4.4 $\mu$ M, but did not show inhibitory effect on the synthesis of COX-2. However, SOP had no effect on the production of reactive oxygen species including superoxide anions and nitric oxide. These results revealed that in vitro anti-inflammatory action of SOP is significantly different from that of genistein known as a phytoestrogen of soy products. This experimental study has documented an importance of dietary soy isoflavonoids as multifunctional agents beneficial to human health, and will help to clarify protective mechanisms of SOP against inflammatory conditions.

원지(遠志)의 항염증 작용에 대한 연구 (Anti-inflammatory activity of the water extract of Polygala tenuifolia Willd)

  • 오현석;김병우
    • 대한한방내과학회지
    • /
    • 제34권2호
    • /
    • pp.204-214
    • /
    • 2013
  • Objectives : This study was designed to investigate the cellular and molecular mechanisms of anti-inflammatory activity of the water extract of Polygala tenuifolia Willd. (Pt-WE). Methods : Using lipopolysaccharide (LPS)-stimulated murine RAW264.7 cells, we examined inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$). Also, the inhibitory effect of Pt-WE on the activity of activator protein 1 (AP-1) and upstream signaling molecules was evaluated. To assess the protective effect of Pt-WE on hydrochloride/ethanol (HCl/EtOH)-induced gastric ulcer in mice, we compared Pt-WE (200 mg/kg) with ranitidine (50 mg/kg) treated mice's gastric mucosa, based on gross observations. Results : Pt-WE inhibited LPS-induced production of NO, $PGE_2$ in a dose-dependent manner, without causing cytotoxicity. Pt-WE suppressed AP-1 activation by reducing generations of both c-Jun and c-Fos. In addition, Pt-WE inhibited the p-MKK 4/7 (mitogen-activated protein kinase kinase 4/7) and p-JNK (c-Jun N-terminal kinase) 1 in LPS-stimulated RAW264.7 cells. HCl/EtOH-induced gastric ulcer lesions were inhibited by pre-treatment of Pt-WE based on gross observations. In addition, Pt-WE decreased the phosphorylation level of JNK. Conclusions : These results demonstrate that Pt-WE has anti-inflammatory and gastroprotective effects. Thus, Pt-WE may be used widely in treatment of not only neurodegenerative diseases but also inflammatory diseases.

교맥(蕎麥)의 비만세포 염증매개물질의 분비와 $Fc{\varepsilon}RI$ 신호전달에 미치는 효과 (Fagopyrum esculentum Extract Suppresses the Release of Inflammatory Mediator and Proximal Signal Events in $Fc{\varepsilon}RI$-mediated RBL-2H3 Cell Activation)

  • 강경화
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.469-474
    • /
    • 2012
  • Fagopyrum esculentum(FE) is an important food crop and medicinal plant that is used to improve diabetes, obesity, hypertension, hypercholesterolemia and constipation in Korea, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. We investigated the effects on the release of inflammatory mediator and proximal signal events in $Fc{\varepsilon}RI$-mediated RBL-2H3 cell activation. FE reduced antigen (DNP-HSA)-induced release of histamine, prostaglandin D2 (PGD2) and cysteinyl Leukotriene (cysLT) in IgE-sensitized RBL-2H3 cells. In addition, it inhibited antigen-induced HDC2 and COX-2 and 5-LO mRNA expression in IgE-sensitized RBL-2H3 cells. FE also suppressed antigen-induced $Fc{\varepsilon}RI{\beta}$ and $Fc{\varepsilon}RI{\gamma}$ subunit mRNA expression in these cells. To identify the mechanisms underpinning the inhibition of release of inflammatory mediators such as histamine and PGD2 and cysLT by FE, we examined the proximal signal events of intracellular FceRI signaling molecules. FE suppressed antigen-induced phosphorylation of Lyn, Syk, LAT, $PLC{\gamma}1$, PI3K, Akt and cPLA2. Collectively, the anti-allergic effects of FE in vitro suggest its possible therapeutic application to inflammatory allergic diseases, in which its inhibition of inflammatory mediator and FceRI-dependent signaling events in mast cells may be hugely beneficial.

잘피 추출물의 UVB로 손상을 유도한 각질형성세포에 대한 항염 효능 (Anti-inflammation effect of extract from Zostera marina using UVB-induced damage on keratinocytes)

  • 김보애
    • 대한본초학회지
    • /
    • 제31권4호
    • /
    • pp.87-91
    • /
    • 2016
  • Objectives : In order to confirm whether extracts of different parts of Zostera marina (ZM), a marine flowering plant, can be used as cosmetic ingredients, this study evaluated their cytotoxicity and cytoprotective effects against ultraviolet B (UVB). Inflammatory responses induced by UV stimuli are also associated with the aging of the skin.Methods : We investigated the effects of ZM extracts on cells through the water soluble tetrazolium salt-1(WST-1) assay for cell viability. In order to investigate the anti-inflammatory effects, we evaluated the suppression of Cyclooxygenase-2 (COX-2) expression by ZM extracts in HaCaT cells with UVB-induced damages, and also evaluated the production of Prostaglandin E2 (PGE2) in RAW 264.7 cells with LPS-induced damages.Results : High cell viabilities above 90% were observed in all types of ZM extracts, except for whole ZM extract at 0.5 mg/ml; in keratinocytes with UVB-induced damages, the cell viabilities were above 80% when treated with all types of ZM extracts. We confirmed their anti-inflammatory effects by investigating the suppression of inflammatory mediators. In keratinocytes with UVB-induced damages, COX-2 expression decreased in the experimental group treated with ZM extract. Similarly, in RAW 264.7 cells where inflammation was induced with LPS, the biosynthesis of PGE2 was inhibited.Conclusion : These results suggest that ethanol extracts from Zostera marina may have value as the potential anti-inflammatory medicinal plant. Also based on the abovementioned results, ZM extract protects skin cells from UV-induced damages, and thus can be used in topically applied products for skin protection.

Ethanolic Extract of Chondria crassicaulis Inhibits the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in LPS-Stimulated RAW 264.7 Macrophages

  • Kim, Yeon-Kye;Jeong, Eun-Ji;Lee, Min-Sup;Yoon, Na-Young;Yoon, Ho-Dong;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.275-282
    • /
    • 2011
  • Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been implicated in various inflammatory diseases. In this study, we investigated the anti-inflammatory activities of Chondria crassicaulis ethanolic extract (CCE) by measuring its effects on the expression of iNOS and COX-2 proteins in lipopolysaccharide (LPS)-treated RAW 264.7 murine macrophages. CCE significantly and dose-dependently inhibited the LPS-induced release of nitric oxide and prostaglandin $E_2$, and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells, without causing any cytotoxicity. It also inhibited the production of the pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 cells. Moreover, treatment with CCE strongly suppressed nuclear factor-${\kappa}B$ (NF-${\kappa}B$) promoter-driven expression in LPS-treated RAW 264.7 cells. CCE treatment blocked nuclear translocation of the p65 subunit of NF-${\kappa}B$ by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that CCE regulates iNOS and COX-2 expression through NF-${\kappa}B$-dependent transcriptional control, and identifies potential candidates for the treatment or prevention of inflammatory diseases.

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.